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Abstract

While the utilisation of hardware accelerators, like GPUs, can significantly
improve software performance, developers often lack the expertise or time to
properly translate source code to do so. In this paper we highlight two ap-
proaches to automatically offload computationally intensive tasks to a system’s
GPU by generating and inserting OpenACC directives; one using grammar-
based genetic programming, and another using a bespoke four stage process.
We find that the grammar-based genetic programming approach reduces ex-
ecution time by 2.60% on average, across the applications studied, while the
bespoke four-stage approach reduces execution time by 2.44%. Despite this,
our investigation shows a handwritten OpenACC implementation is capable of
reducing execution time by 65.68%. Comparing the differences, we identified
a promising avenue for future research: combining genetic improvement with
better handling of data to and from the GPU.
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1 Introduction

As the power of a single processing core reaches its limit, modern computer
systems have become increasingly reliant on multicore architectures and accel-
erators; devices such as GPUs, FPGAs, and cryptography co-processors that
are capable of improving the performance of specific computational tasks.

CUDA [13] and OpenCL [19] are languages that have been introduced to al-
low the development of software for GPUs. The VHSIC Hardware Description
Language exists for FPGAs [11], and various frameworks and libraries exist to
utilise multicore CPUs [7, 8]. However, utilising these languages, libraries, and
frameworks is difficult for most developers as they do not lend themselves to
traditional programming paradigms. In the domain of optimisation, software
written to be executed sequentially (as is in languages such as C/C++) cannot
easily be translated to run on these targets like multicore CPUs or GPUs as
these architectures can only increase performance via parallelisation. Indeed,
translation may be impossible — some code is simply dependent on one instruc-
tion being executed after another. Learning to use these languages, frameworks,
or libraries correctly is a large investment. In many cases, utilisation can be of
considerable benefit to software performance but it is not economical due to the
costs of human developers and the training they require.

In response to this, directive-based approaches have been developed. These
allow engineers to create software in a manner in which they are comfortable
and later add directives that inform the compiler to offload certain segments of
code to other processing cores and/or hardware accelerators. Though simpler to
utilise than CUDA, OpenCL, or other languages and frameworks, implementing
these directives still requires training and incurs a cost in regards to developer
time as the process of adding these directives to software is one of trial and
error. Our goal in this research is to develop techniques to automatically insert
these directives without any human intervention.

In this investigation we focused on optimising code to utilise the system’s
GPU. As such we studied inserting OpenACC [21] directives as OpenACC is,
at the time of writing, the state-of-the-art when it comes to directive based
GPGPU programming. It has been shown superior to its main rival, OpenMP [7]
in this domain1 [18].

To the best of our knowledge, there is only one other approach that automat-
ically inserts OpenACC directives — a source-to-source compiler module called
DawnCC [12]. DawnCC uses established static analysis techniques to determine
where to insert OpenACC directives safely while incorporating range analysis
to determine the range of arrays to copy from and to the system’s GPU. How-
ever, we found that when DawnCC was run on the NAS-NPB benchmark suite
(the suite of applications we later use to evaluate our approaches), DawnCC
increased execution time in six of the seven applications (and could not influ-
ence execution time by a statistically significant extent in the remaining one)2.

1It should be noted, both OpenMP and OpenACC are similar standards so the techniques
described in this paper could be adapted to insert OpenMP directives if desired.

2This short investigation is outlined, in greater detail, in Appendix B.
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The reason for this is simply offloading code to the GPU does not guarantee
faster code. For each parallelised region of code, there is an overhead where in-
formation must be transferred to the GPU for processing then transferred back
upon completion. It is not at all uncommon for this transfer overhead to nullify
any improvements that may be gained form parallelisation. This overhead is
difficult, if not impossible, to determine at compile time.

So, while an important contribution, the techniques outlined in this paper
differ to DawnCC in that they utilise genetic improvement [17]; a sub-domain
of search-based software engineering [9] which applies search-based techniques
to modify and improve software with respect to some user-defined objective. In
genetic improvement the problem faced by DawnCC is not so much a problem
as the target software is run and measured during optimisation using tests rep-
resentative of usage during optimisation. Additionally, compilers must preserve
the semantics of source code regardless of whether the semantics are efficient or
necessary. Genetic improvement, on the other hand, only preserves the seman-
tics specified by the user through a fitness objective (typically in an implicit
manner via tests). This allows for more avenues of optimisation. We think the
application of genetic improvement to the automatic generation and insertion
of OpenACC directives is a worthwhile endeavour and we are therefore the first
to apply genetic improvement to parallelise code by the automatic generation
and insertion of directives.

We investigated two genetic improvement approaches to automatically gen-
erate and insert OpenACC directives. One utilises grammar-based genetic pro-
gramming [20] (GB-GP) to produce directives which are then inserted into the
target source code with the execution time of the modified software (once com-
piled and run on a test input) used as the GB-GP’s fitness measure. We refer
to this as GB-GP-Parallelisation. In the other takes a more bespoke approach.
It inserts OpenACC directives to source code and tunes them in four separate
steps, each of which uses either a greedy algorithm or an evolutionary strat-
egy [3]. We refer to this as Four-Stage-Parallelisation.

We evaluated our approaches on a sequential variant of the NAS Paral-
lel Benchmark suite [4] provided by the Center for Manycore Programming at
Seoul National University [6]. We refer to this collection of applications as
the SNU-NPB suite. We ran both the GB-GP-Parallelisation and Four-Stage-
Parallelisation approaches on each application within the SNU-NPB suite to
produce variants which contain OpenACC directives. We compared the execu-
tion time of the sequential applications against these variants when running a
test input to evaluate our approaches.

In order to make a truly fair evaluation as to the effectiveness of our ap-
proaches we needed a baseline truth; knowledge of what is achievable when
attempting to optimise these sequential applications by inserting OpenACC
directives. Fortunately found such a baseline. Pino et al. parallelised the SNU-
NPB suite using OpenACC directives as part of an investigation comparing
OpenACC against OpenMP [18]. They have since made this hand-implemented
OpenACC variant public [2]. We refer to this as the SNU-NPB-ACC suite. We
use the performance of the SNU-NPB-ACC suite as a ‘best-case scenario’ proxy
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for our automatic OpenACC insertion techniques. With this setup, we ask the
following research questions:

RQ1 How effective is GB-GP-Parallelisation?

RQ1a What execution time reductions are achievable when using GB-GP-
Parallelisation?

RQ1b How do the reductions in execution time compare to handwritten
OpenACC implementations?

RQ2 How effective is Four-Stage-Parallelisation?

RQ2a What execution time reductions are achievable when using Four-
Stage-Parallelisation?

RQ2b How do the reductions in execution time compare to handwritten
OpenACC implementations?

RQ3 What differs between the solutions produced by GB-GP-Parallelisation,
Four-Stage-Parallelisation, and the handwritten OpenACC implementa-
tions?

We found that neither techniques were capable of producing substantial sav-
ings in execution time. GB-GP-Parallelisation reduced execution time by 2.79%
on average, while Four-Stage-Parallelisation reduced execution by 2.44%. In
contrast, the handwritten SNU-NPB-ACC implementations reduces execution
time by 65.68% on average. We found no cases where the solutions produced by
GB-GP-Parallelisation and Four-Stage-Parallelisation could improve upon both
the sequential and hand-implemented variants of an application.

When comparing the solution we found that the handwritten implemen-
tations in the SNU-NPB-ACC suite utilised the OpenACC #pragma acc data

directive to a significantly greater extent than in either of our approaches. These
directives manage how and when data is moved to and from the GPU; a costly
exercise. When we removed these directives from the handwritten implemen-
tation, the execution time of the applications increased significantly (from just
over 1.9 seconds to 3463.23, just under an hour, in one case), showing that
these directives are extremely important when maximising the reducing execu-
tion time via parallelisation. We therefore advise that future researchers put
more emphasis on optimising the flow of data to and from the hardware accel-
erators.

2 Setup

In this section we discuss the design of both the GB-GP-Parallelisation and
Four-Stage-Parallelisation techniques, the environment in which they were run,
the applications in which they targeted, and the methodology we adhered by to
obtain the data necessary to answer the research questions.
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Figure 1: The Architecture of GB-GP-Parallelisation

<start>:: <start> | <start> | <directive>

<directive> ::= "#pragma acc parallel loop " <loop_line_number>

| "#pragma acc wait " <line_number>

<loop_line_number> ::= "34@FileB.c" | "55@FileA.c"

<line_number> ::= "11@FileA.c" | "40@FileB.c" | "55@FileC.c"

Figure 2: A heavily-abridged example of the OpenACC grammar in Backus
Normal Form (BNF)

2.1 GB-GP-Parallelisation

Figure 1 shows the basic architecture of GB-GP-Parallelisation. At its core is a
grammar-based genetic programming algorithm which produces a solution that
is then translated into a patch that may be applied to the target source code to
insert OpenACC directives. This patch is evaluated by a fitness function, and
this fitness is returned to the grammar-based genetic programming algorithm.
A grammar-based genetic programming algorithm functions like a traditional
genetic programming (GP) algorithm [5] but has fixed rules (i.e. a grammar)
which describes how terminals and non-terminals may join in the tree. In a
traditional grammar-based GP setup they are two inputs: the grammar, and
a fitness function to evaluate the solutions it produces. Our setup is more
convoluted as it requires specific data from the target source code to create both
the grammar and to generate a patch from a solution output by the grammar-
based GP.
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Figure 2 shows an abridged snippet of the OpenACC grammar in Backus
Normal Form (BNF), like that we use in the GB-GP-Parallelisation setup.
Grammar-based GP searches the set of solutions achievable within its grammar
and, by design, is incapable of producing grammatically invalid solutions. As an
example, for the grammar in Figure 2, #pragma acc parallel loop 11@FileA

can never be generated as 11@FileA.c is a production of <line number>, not
<loop line number>.

In our work the grammar is considerably more complex than this. The
data necessary to produce a solution that will then be converted into a patch
requires two components: what we call the ‘OpenACC grammar’ (which is a
constant across all target source code, shown in Appendix A), and source code
data. The OpenACC grammar is incomplete as, while it contains rules on how
OpenACC directives must be structured for the compiler to interpret, it is miss-
ing production rules on where to insert these directives. GB-GP-Parallelisation
appends these production rules to the OpenACC grammar during execution
based on data extracted from the target source code. The full grammar (the
OpenACC grammar plus the source code data) is thereby unique for each
application. These appended production rules are the source code line num-
bers (<line number>), the location of FOR loops (<loop line number>), the
location of the first statement within a FOR loop (<top loop line number>),
and the location of functions (<function line number>). In our setup the
grammar-based GP will output solutions such as #pragma acc parallel loop

12@FileA.c. The postfix, 12@FileA.c, is information unique to that applica-
tion; a valid insertion point for the directive in this case. These solutions are
then parsed into patches. The #pragma acc parallel loop 12@FileA.c ex-
ample would result in a patch that inserts #pragma acc parallel loop at line
12 in FileA.c.

With the aforementioned production rules appended, the grammar-based
GP can produce solutions, though translation is required to transform them
into software patches. Some OpenACC directives declare how program vari-
ables are transferred to and from the GPU and main system memory. The
patches therefore require the names of variables. In the grammar, variables are
represented as integer placeholders, ranging from 1 to 100. These placehold-
ers are translated into variable names when the solution is transformed into a
patch. To translate an integer placeholder i into a variable we obtain a sorted
vector V of all variables within the directive to be inserted’s scope. We then
select Vj from this vector where j = i mod |V |. For example, the partial solu-
tion #pragma acc parallel loop copyin(34) with the vector of variables V
equal to [varA, varB, varC, varD], would select the 34 mod |V |th element
in V (where 0 is the first element). In this case 34 mod |V | = 2, and thus
varC would be chosen, resulting in the solution being translated to #pragma

acc parallel loop copyin(varC).
Finally there are circumstances when our grammar may introduce new pro-

gram scopes (i.e., curly brackets in C/C++). We represent the location of
the end of these scopes as a placeholder in the OpenACC grammar. Again,
these range from 1 to 100. A solution produced by the grammar may be
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#pragma acc kernels \n{35 15@FileB.c which would be translated into a
patch by inserting #pragma acc kernels \n{ at line 15 in FileB.c, then in-
serting the closing bracket, }, 35 statements after this insertion, skipping inner
scopes (such as FOR, WHILE, and IF statements). If the end of the current scope
is reached, we start over from the directive insertion point (in this example case,
line 35).

To implement our grammar-based genetic programming approach, we used
Epochx 1.4.1 [15], an open source genetic programming framework, written in
Java, which supports grammar-based genetic programming. As genetic pro-
gramming algorithms can be setup in any number of ways, it is important to
state how that contained in Epochx 1.4.1 functions.

Algorithm 1 The Genetic Programming Algorithm

Require: G, the number of generations, G ∈ N
C, the crossover rate, C ∈ R ∧ 0 ≤ C ≤ 1
M , the mutation rate, M ∈ R ∧ 0 ≤M ≤ 1
S, the population size, S ∈ N
T , the tournament size, T ∈ N
initialise population(S), returns an initial population of size S
evaluate(P ), evaluates all the solutions in the population P
select(P, T ), Tournament selection of size T on population P
crossover(p1, p2), crossover using parents p1 and p2
mutate(p), returns a mutant of solution p
get random(), returns a random number r : r ∈ R ∧ 0 ≤ r ≤ 1

1: P ←initialise population(S)
2: evaluate(P )
3: for 1 . . . G do
4: P ′ ← {}
5: while |P ′| < |P | do
6: r ← get random()
7: if r < C then
8: p1 ← select(P, T )
9: p2 ← select(P, T )

10: P ′ ← {P ′} ∪ {crossover(p1, p2)}
11: else if r < (C + M) then
12: p←select(P )
13: P ′ ← {P ′} ∪ {mutate(p)}
14: else
15: P ′ ← {P ′} ∪ {select(P, T )}
16: end if
17: end while
18: P ← P ′

19: evaluate(P )
20: end for
21: return x, where x ∈ P ∧ x.fitness 6= −1 ∧ ∀p ∈ P : x.fitness ≤ p.fitness
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Algorithm 2 Generating the Initial Population

Require: S, the population size, S ∈ N
mutate(p), returns a mutant of solution p
get initial solution(), returns a single initial solution
get random solution(), returns a random solution

1: P ← {}
2: i← 0
3: N ← 3S
4: while |P | < S ∧ i ≤ N do
5: P ← {P} ∪ {get initial solution()}
6: i← i + 1
7: end while
8: i← 0
9: while |P | < S ∧ i ≤ N do

10: p←get initial solution()
11: P ← {P} ∪ {mutate(p)}
12: i← i + 1
13: end while
14: while |P | < S do
15: P ← {P} ∪ {get random solution()}
16: end while
17: return P

Algorithm 1 outlines the genetic programming algorithm used in GB-GP-
Parallelisation. Conforming to the grammar, a population P is initialised via
the function initialise population. The population is then evaluationed via the
evaluate method, giving each solution in the population a fitness value. The
algorithm then iterates through a number of generations G. At the start of each
new generation another population P ′ is derived from the previous generation
P using crossover, mutation, and selection; the proportion of each based on the
crossover rate C, and mutation rate M . Both crossover and mutate require
solutions to be selected via select, a tournament selection of size T which selects
based on the fitness of the solutions in the population P . Once the generation
of P ′ is complete, P is replaced by P ′ and the population is evaluated. The
best solution from the final generation, based on the solutions’ fitness, is then
returned as the final, ‘champion’, solution.

The functionality of initialise population is shown in Algorithm 2. The ini-
tial population algorithm starts by attempting to populate set P with those
generated by get initial solution which iterates through the target source code’s
FOR loops returning a solution which adds the #pragma acc parallel loop

directive to this location. As it is possible that the number of FOR loops is
less than the population size, and duplicates are not permitted, we limit the
number of calls to get initial solution to three times the population size (N).
If, after this, the population size is not met, get initial solution is called with
its output mutated via the mutation operator. Again, this attempt is limited
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<start>::= <start> <start> | <directive>

<directive>::= "#pragma acc " <choice>

<choice>::= "parallel " <parallel> ...

| "loop " ... <loop_line_number>

| "parallel loop " ... <loop_line_number>

| "kernels " ... <line_number>

| "kernels loop " ... <loop_line_number>

| "data " ... <line_number>

...

Figure 3: An abridged version of the first three production rules in the Ope-
nACC grammar

by three times the population size iterations (though given the search space of
mutating one directive being high, this is rarely met in practise). Finally, if the
population size is still not met, the rest of the initial population is filled with
truly random solutions (via get random solution).

Our crossover operator takes two solutions as parents (selected using tour-
nament selection) then produces a child with each directive, within each par-
ent, having a 50% change of being included in the child solution. Figure 3
shows how our OpenACC grammar permits this type of crossover as directives
(<directive>) may be taken away or added indefinitely.

Our mutation operator is based on the mutation operator first outlined by
Whigham when he proposed grammar-based genetic programming [20]. Whigham
mutation randomly selects a subtree and replaces it with a randomly generated
(and grammatically correct) alternative. In our customisation, we do this 50%
of the time. In the other 50% of the time we add a new directive to the solu-
tion, produced by calling get initial solution. This is our way of introducing (or
reintroducing) sensible genetic material into the population.

When evaluating a solution produced by the grammar-based GP, we trans-
late it into an UNIX patch. However, before doing this we run some checks on
the solution. There are some instances where the grammar produces incorrect
or inefficient solutions that are easy to fix. Our goal with this fix step is to re-
duce the number of ineffective evaluations. First we check that no two directives
share the same insertion point. If this is found we select one and uniformly se-
lect another location (conforming to the grammar) within the source code. We
iterate through all the directives within the solution until we achieve a pass in
which all directives have a unique insertion point. As it is feasible that all insert
locations are occupied, we only allow a maximum of five passes over the same
solution. If this maximum is met, the fixing is declared to have failed which
automatically results in the solution being rejected, with a fitness value equal to
that if it did not meet our fitness function hard constraints. Next we check to
ensure that any instance of #pragma acc loop is contained within a #pragma

acc kernels loop, #pragma acc kernels, or #pragma acc parallel loop
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Figure 4: The Architecture of Four-Stage-Parallelisation

construct. #pragma acc loop is inert when not present within these and, if
such an instance is found, we convert it to #pragma acc parallel loop so
it has an opportunity to optimise. Likewise, a #pragma acc parallel loop

directive cannot be nested within a #pragma acc parallel loop or #pragma

acc kernels construct. In such an instance the directive is changed to #pragma

acc loop.
Once this ‘fixing’ step is complete the framework translates the solution into

a UNIX patch. This is then passed to a script, bespoke to each application,
which returns the fitness value. The contract of this script is it must return a
positive double value, and this double tends towards zero for fitter solutions.
A value of ‘-1’ is returned if the solution breaks a hard constraint. In all the
applications we target, we write the fitness function to return the execution
time of the applications. If application cannot be compiled, produces an invalid
output, or reaches a timeout (10 minutes), we return ‘-1’. In our setup this is
translated to a fitness value equal to java.lang.Double.MAX_VALUE within the
Epochx GB-GP evaluation procedure. When the script returns the fitness value
for that patch, we give the corresponding solution that fitness and let the GP
continue.

2.2 Four-Stage-Parallelisation

Figure 4 shows the basic architecture of Four-Stage-Parallelisation. The optimi-
sation happens over four distinct stages which we shall explain in this Section.
Optimisation starts with insertion optimisation then moves through to direc-
tive pruning, parameter optimisation, and, finally, delta debugging. The origin
of this design is that, unlike the process of GB-GP-Parallelisation, it more ac-
curately represents the steps undertaken by a human implementing OpenACC
directives. Adding a #pragma acc parallel loop directive to parallelise a FOR

loop can increase execution time by a large amount until the correct parameters
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are added. Humans are aware of this and, as such, common advice on imple-
menting OpenACC is to do so in stages, being aware that the product at the
end of the earlier stages may be worse than the original, unmodified software.
The different stages in the Four-Stage-Parallelisation take this consideration
into account.

The first stage, insertion optimisation, is a greedy approach to annotating
FOR loops as parallelisable (via the insertion of #pragma acc parallel loop

directives). Our goal in this stage is not to optimise for execution time but
instead maximise the number of FOR loops that are parallelised. For each FOR

loop within the program, a #pragma acc parallel loop directive is added,
then the fitness function is run. In our setup a fitness function of ‘-1’ indicates
a failure to compile, a failure to preserve semantics, or a timeout. The insertion
optimisation keeps any #pragma acc parallel loop insertions if the fitness
function returns any value other than ‘-1’.

It should be noted that in the case of nested loops, an outer loops is always
tested before its inner loops. As inserting a #pragma acc parallel loop di-
rective cannot appear within a FOR loop already parallelised by a #pragma acc

parallel loop directive (the compilation will fail), the framework has a bias to
the parallelisation of outer loops. This is favourable as it results in more of the
program being parallelised. When this stage is complete the solution with the
most parallelised FOR loops (while preserving semantics and avoiding timeouts)
is passed to the second stage.

The second stage, data optimisation, optimises the handling of variables
that are initialised before a parallelised FOR loop structure but utilised within.
In OpenACC each of these variables may be declared as either copy, copyin,
copyout, create, or present. copy for when the variable must be copied into
the GPU at the start of the parallelised FOR loop and copied out at the end.
copyin for when the variable only needs to be copied into the GPU before
computation but not copied back to main memory after. copyout for when the
variable only needs to be copied back to main memory after (the variable is
created on the GPU, but no value is moved from the system’s main memory, it
is assumed the value will be set within the GPU). create for when the variable
should be created within, and neither copied to or from, the GPU. Finally there
is present which informs the compiler that the variable is already within the
GPU and no action is needed. Without declaring a variable, the decision is
left to the compiler. These declarations are appended to the end of OpenACC
directives, for example: #pragma acc parallel loop copy(variable).

To optimise this we represent each variable decision as a gene within a geno-
type. The value (or allele) of each gene is the corresponding variable’s status
within a specific parallelised FOR loop (we include a ‘no status set’ option to
leave the decision to the compiler). We carry out a (1+1) evolutionary strategy
(ES) [3] on this representation, with a mutation rate (the probability that any
gene in the genotype is mutated while generating a variant) of 1/l where l is
the number of genes/variables. A mutation operation on any gene will change
its value to another state uniformly selected from all available states. We start
with an initial genotype with all its genes having a ‘no status set’ value. In this
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stage the fitness function is utilised in full (same fitness function as used for the
GB-GP-Parallelisation). That is, we attempt to reduce the execution time. We
take the best solution found during this and pass it forward to the next stage.

The parameter optimisation stage functions in a similar manner to data opti-
misation stage. For each #pragma acc parallel loop directive there are three
parameters which we optimise — num gangs, num workers, and vector length.
In the OpenACC model of parallelisation there are three levels: ‘gang’, ’worker’,
and ‘vector’ The vector layer functions as a SIMD parallelisation; individual in-
structions working over multiple data elements. The vector length is the num-
ber of data elements that may be operated on with the same instruction. The
worker layer ‘works’ an individual vector. The num workers specifies how many
workers there are within a gang. A gang is a collection of workers that share a
common cache memory. num gangs specifies the number of gangs. Their is no
synchronisation or data communicated between gangs, each works completely
independently. This model of parallelisation has been designed so OpenACC
may target many different types of hardware — different types of GPUs as
well as other hardware accelerators. Therefore, for each FOR loop parallelisa-
tion, for each hardware target, there is an optimal setting for the num gangs,
num workers, and vector length parameters. If these parameters are not spec-
ified they are determined by the compiler though they are seldom optimal.

In our experiments we set each of these parameters to 2X where X ∈ N∧X ≤
10. Like before, we have a special ‘value not set’ status to indicate the setting of
a parameter is to be left to the compiler. As in the data optimisation stage, we
represent the space of parameter settings as a series of genes. Every parallelised
FOR loop has three genes within the genotype, one gene for each of the three
parameters (num gangs, num workers, and vector length). We then use a
(1+1)-ES with a mutation rate of 1/l where l is number of genes/parameters
to tune. The fitness function is the same as in the data optimisation stage;
optimising the execution time while preserving program semantics. All the
genes in the initial genotype are set to ‘value not set’ (i.e. the decision is left to
the compiler). As in the previous stages, we take the best solution found and
pass it forward to the next, and final, stage.

The goal of the final stage, directive pruning, is to remove any directives
which are not decreasing the programs execution time, even after optimising the
handling of data and their parameters. We do this in a greedy manner. First we
measure the fitness of the current, full, solution, fc. For each parallelised FOR

loop, we remove the #pragma acc parallel loop... directive and measure
the fitness, f , of the solution. If f ≤ fc then fc = f . Otherwise, the directive is
returned to the solution.

It should be noted that directive pruning may return a solution where no
loops are parallelised, or even a solution in which the execution time is greater
than the original. The directives are not completely independent. We find there
is a synergistic effect where a set of directives must all be removed to reduce
execution time while removing a subset of these directives increases execution
time. This stage outputs the final solution.

When running both GB-GP-Parallelisation and Four-Stage-Parallelisation
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we must allocate a certain number of evaluations. While in GB-GP-Parallelisation
the number of evaluations can be set by altering the population size and number
of generations, in Four-Stage-Parallelisation, the division of evaluations between
stages must be carefully considered. To do so we first acknowledge that, for any
application, the number of evaluations required by the insertion optimisation
and directive pruning is constant. Insertion optimisation must evaluate all FOR
loops, and directive pruning must evaluate all loops found to be parallelisable
by the insertion optimisation step. Therefore, given a fixed evaluation budget,
after running insertion optimisation we know the number of evaluations left to
divide between the data optimisation and parameter optimisation stages. We
first calculate what the maximum number of evaluations would be to exhaus-
tively search each genotype in the data optimisation and parameter optimisation
stages. We then weigh the parameter optimisation’s ‘maximum number of eval-
uations’ figure by 0.5. The reason for this is we observed that the parameter
optimisation step is of low value compared to the data optimisation step. We
then split the remaining number of evaluations (after taking into account that
used/to be used by the insertion optimisation and data debugging stages) be-
tween the data optimisation and parameter optimisation stages proportional to
their respective ‘maximum number of evaluations’ value.

2.3 Environment

We compiled the solutions produced by GB-GP-Parallelisation and Four-Stage-
Parallelisation using the PGI 16.7 compiler. The PGI 16.7 compiler, provided
by The Portland Group, compiles the OpenACC annotated source code under
the OpenACC 2.5 standard. We ran the experiments on an Ubuntu 14.04.5
LTS Desktop system with an Intel Core i5-650 processor (3.2 GHz, 2 cores),
4GB of RAM and an nVidia GeForce GTX 1060 GPU. Genetic improvement
implicitly optimises for the target hardware. Therefore any optimal solutions
found in this investigation may not be optimal across all hardware targets [10].
We believe this to be an advantage of our approach rather than a hinderance.
It allows software to be optimised in respect to the deployment environment.
In some regards this work echoes previous work on using automatic parameter
tuning to optimise kernels for specific GPU setups [14, 16]

2.4 Application Selection and profiling

In this work we targeted the Seoul National University NAS Parallel Bench-
mark (SNU-NPB) Suite [6], version 1.0.3. This benchmark suite is derived from
the NAS Parallel Benchmark (NPB) suite [4], a collection of applications de-
signed to benchmark parallel super computers. The NPB suite is written mostly
in FORTRAN which neither of our approaches, at present, can process. The
SNU-NPB variant has translated the suite to the C programming language and
includes a sequential version of the applications, which we target in this investi-
gation. The suite contains seven applications, the details of which are outlined
in Table 1.
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Application Description # C Files
(Targeted)

LOC (Targeted) Input Class Execution
Time (s)

BT Block Tridiagonal: Solves a synthetic
system of non-linear partial differential
equations using block tridiagonal ma-
trices.

14 (6) 2,456 (1,419) Custom∗ 14.39

CG Conjugate Gradiant: Using a conju-
gate gradient method, estimates the
smallest eigenvalue of a large sparse
symmetric positive-definite matrix.

2 (1) 491 (262) Custom∗ 7.91

EP Embarrassingly Parallel: Generates in-
dependent Gaussian random variates
using an ‘embarrassingly parallel’ ap-
proach.

4 (2) 365 (182) A 25.92

FT Fourier Transform: Solves a three-
dimensional partial differential equa-
tion using a fast Fourier transform.

6 (3) 613 (224) A 7.93

LU Lower-Upper: Solves a synthetic sys-
tem of non-linear partial differential
equations using a a lower and upper tri-
angular matrix.

18 (6) 2,183 (1,053) W 5.48

MG MultiGrid: Estimates the solution of a
3-dimensional discrete Poisson equation
using the V-cycle multi-grid method.

2 (2) 878 (387) B 7.45

SP Scalar Pentadiagonal: Solves a syn-
thetic system of non-linear partial dif-
ferential equations using a scaler penta-
diagonal matrix.

17 (5) 1,944 (1,065) W 5.23

TOTAL — 63 (25) 8,930 (4,592) — 74.31
AVERAGE — 9.0 (3.6) 1,275.7 (656.0) — 10.62

Table 1: The sequential applications within the NAS-NPB Suite, showing the number of C files, line of code, input class used,
and execution time. Files and lines targeted by our approaches are in parenthesis. ∗Custom input classes defined in text.
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The applications in the SNU-NPB suite each have a selection of input classes
(input data with corresponding output data; essentially black box tests). When
optimising the applications we use a single input class to train and evaluate
on. For each application we selected the input class that ran for more than
5 seconds (so that smaller reductions in execution time could be detectable
and not confused with statistical variance) but less than 30 seconds (to keep
evaluation times at a manageable level). If two or more input classes fell within
this range the one with the lowest execution time was chosen. If there were no
input classes a custom input class was created.

Both BT and CG required custom classes to be created. A problem class
for BT was created with 40x40x40 grids over 200 times steps with DT equal to
0.8× 10−3. For CG, we created a problem class with a size of 30,000 over 30
iterations.

For each application we only target a subset of the code for optimisation. To
determine what subset to use we profiled each application using GPROF 2.24
(with the code compiled using GCC 4.8.4) running each application’s respective
input class. We focused on the level of C functions and selected the minimum
set of functions that accounted for over 90% of execution time. We also included
the applications’ main methods as, in a manner of speaking, this accounts for
100% of execution time. The details of how many files/LOC were ultimately
selected from this process is noted in Table 1 (in parenthesis).

Our reasoning for selecting the SNU-NPB suite above others is its applica-
tions are written in C (thereby compatible with our frameworks), they can be
compiled by the PGI 16.7 compiler we use in our experiments, they contain test
data so the correctness of program variants can quickly be verified, they run in a
non-trivial amount of time (lower execution times make results more susceptible
to statistical error), and we know that the applications are parallelisable. One
other important factor in our decision is the existence of the SNU-NPB-ACC
suite [2, 18] .

The SNU-NPB-ACC suite contains all the applications found within the
SNU-NPB sequential suite but manually annotated with OpenACC directives,
thereby parallelising them. We treat these hand-implemented OpenACC di-
rectives as a ‘ground truth’ for both GB-GP-Parallelisation and Four-Stage-
Parallelisation. That is, a good estimate for what is achievable when targeting
these applications. We compare the patches created by our approaches, for each
application, against the solutions within the SNU-NPB-ACC suite in order to
observe how our approaches may be modified to achieve better parallelisation;
to behave more like a human expert.

2.4.1 Fitness Functions

All the applications targeted have a fitness function associated with them.
Shown in Algorithm 3 is the template fitness function we use in our investi-
gations. It should be noted, each application has its own fitness function with
the application directory D, the execution timeout T , and the input data I
hard-coded. This is because, in both our approaches, the fitness function is
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expected to accept only one parameter: the patch, P .

Algorithm 3 The skeleton fitness function used for evaluating each application

Require: D, the directory of the application
P , the input patch (optional)
T , execution timeout, T ∈ N
I, input data
is present(P ), returns True if that P is present, otherwise false
apply patch(P,D), returns the directory D with patch P applied
compile(D), compiles the code in D, returns True if successful
run(D, I), executes D on input I and returns the output
timeout(T,C), executes C, capping its execution to time T
is successful(O), returns True of the output O , is valid
execution time(O), returns the execution time from the output O

1: if is present(P ) then
2: D′ ← apply patch(P,D)
3: else
4: D′ ← D
5: end if
6: R← −1 #R, the value to be returned
7: if compile(D′) then
8: if timeout(T, Or ←run(D′, I)) then
9: if is successful(Or) then

10: R←execution time(Or)
11: end if
12: end if
13: end if
14: return R

In this algorithm we allow the fitness function to evaluate the program with-
out any optimisation. To do this no patch, P , is given. If present, the patch is
applied then the application is compiled. If this compilation was unsuccessful,
then ‘-1’ is ultimately returned. If compiled successfully we ran the application
on its test input and record the program’s output Or. We utilise the GNU
project’s timeout utility (version 8.21) to put an upper-limit on the evaluation
time of a solution. The timeout utility will produce a non-zero exit code for a
timeout, otherwise return the exit code of the application. In Algorithm 3, we
abstract this to a simple function which returns true if no timeout occurred. If
the application crashes during execution as it relays the application’s exit code
through the timeout function (meaning the function timeout returns false in
Algorithm 3). The output of the program, Or, contains two pieces of informa-
tion: the execution time, and whether the application ran successfully — that
is, whether it produced the correct output for the corresponding input. Using
Or we output the execution time if the application run successfully and ‘-1’ if
it did not.

RN/18/04 15



Towards automatic generation and insertion of OpenACC directives

2.5 Methodology

We allocated 600 evaluations, for each application, when running both GB-
GP-Parallelisation and Four-Stage-Parallelisation. For GB-GP-Parallelisation
we set a population size of 60, over 10 generations, with a crossover and mutation
rate of 0.33, and a tournament size of 6 (10%). The allocation of evaluations
between the four stages for Four-Stage-Parallelisation is discussed in Section 2.2.
For each we set the evaluation timeout (in the fitness function, see Algorithm 3)
to 10 minutes.

For each application, we run the GB-GP-Parallelisation solution, the Four-
Stage-Parallelisation solution, the original sequential application as found in
the SNU-NPB, and the handwritten OpenACC implementation found in SNU-
NPB-ACC, with the same input (see Table 1) 100 times, recording the execution
time for each run.

With this data we then used the Wilcoxon rank sum test to declare whether
GB-GP-Parallelisation or Four-Stage-Parallelisation were capable of reducing
execution time by a statistically significant extent (p < 0.05) when compared the
sequential source. We also noted the mean percentage change in execution time
when comparing the solutions produced by GB-GP-Parallelisation and Four-
Stage-Parallelisation compared to the sequential and handwritten OpenACC
implementations for each application.

3 Results

In this section we show the results of carrying out the methodology outlined
in Section 2.5, using the GB-SP-Parallelisation and Four-Stage-Parallelisation
techniques described in Sections 2.1 and 2.2, to answer the research questions
outlined in the paper’s introduction.

3.1 GB-GP-Parallelisation

To answer RQ1a, What execution time reductions are achievable when using
GB-GP-Parallelisation?, we produced Figure 5. This bar chart shows the per-
formance of GB-GP-Parallelisation; the optimal applications’ execution time is
shown as a percentage of the original, unmodified, sequential equivalent. We
found that GB-GP-Parallelisation reduces the execution time of CG, EP, and
SP by 2.64%, 15.56%, 0.25%, on average, respectively. For all other applica-
tions no statistically significant change in execution time was observed. Treating
those with no statistically significant change as a 0% reduction, we can say GB-
GP-Parallelisation reduces execution time, across all applications, by 2.79% on
average.

In answering RQ1b, How do the reductions in execution time compare to
handwritten OpenACC implementations?, we produced Figure 6. This bar chart
shows how these solutions compare to handwritten OpenACC implementations
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Figure 5: The performance of application optimisations using GB-GP-
Parallelisation
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617

Figure 6: The performance of application optimisations using GB-GP-
Parallelisation against the handwritten OpenACC implementation
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found in the SNU-NPB-ACC suite. As can be seen, only in one case does GB-
GP-Parallelisation improve upon that produced by a human implementation.
This one case is not due to the optimisation reducing execution time by a
significant extent (the CG solution only reduces execution time by 2.64%). It is
because the handwritten OpenACC implementation for CG increases execution
time by 517%. We do not know why the handwritten CG implementation
runs so poorly on our setup though we suspect this is due to some OpenACC
optimisations simply not being universally beneficial across all hardware targets.

Treating CG as a 0% reduction, the handwritten OpenACC implementa-
tion reduces execution time by an average of 65.68%. It is therefore evident
that GB-GP-Parallelisation could be improved upon significantly if we take the
handwritten implementation as a guide to what is achievable.

3.2 Four-Stage-Parallelisation

In answering RQ2a, What execution time reductions are achievable when us-
ing Four-Stage-Parallelisation?, we produced the bar chart shown in Figure 7.
Compared to that produced by GB-GP-Parallelisation, they are similar. A sta-
tistically significant decrease in execution time was only found in one case, EP,
with a reduction of 17.09%. Due to how Four-Stage-Parallelisation works, it is
possible for the ‘optimal’ solution produced to increase execution time. This is
due to the directive pruning stage, which utilises a greedy approach to select-
ing the optimal subset of loop parallelisations. In the case of LU, the optimal
solution solution found with no modifications to the source code (i.e. the ‘delta
debugging’ stage removed all the inserted directives). In both Figure 7 and 8,
we set LU as having an execution time of 100% of the sequential. Bar LU, all
the effects found were statistically significant. BT increased execution time by
1.37%, CG 0.31%, FT 1.02%, MG 0.10%, and SP 13.50%.

If we consider an increase in execution time to be a 0% decrease (as any
user of Four-Stage-Parallelisation would choose the original sequential applica-
tion in the case where it increased execution), we say Four-Stage-Parallelisation
decreases execution time by 2.44% on average across all applications. This is
slightly lower than GB-GP-Parallelisation’s 2.79% reduction but the difference
between the two is minimal. Given Four-Stage-Parallelisation’s tendency to
increase execution time, and the slightly lower reduction on average, GB-GP-
Parallelisation appears superior to Four-Stage-Parallelisation. However, both
are inferior when compared to the handwritten, OpenACC implementation.

In answering RQ2b, How do the reductions in execution time compare to
handwritten OpenACC implementations?, we produced Figure 8. This bar chart
shows how the optimisations produced by Four-Stage-Parallelisation compare
against the handwritten OpenACC implementation. As in the case of GB-GP-
Parallelisation, there is only one case in which a solution produced by Four-
Stage-Parallelisation is superior, that of CG. Again this is due to the very poor
performance of CG and the solution found by Four-Stage-Parallelisation for CG
actually increases by 0.31%.

Just as in the case of GB-GP-Parallelisation, we can see there are significant
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Figure 7: The performance of application optimisations using Four-Stage-
Parallelisation
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617

Figure 8: The performance of application optimisations using Four-Stage-
Parallelisation against the handwritten OpenACC implementation
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performance gains that are not being exploited. The question therefore stands,
what does the handwritten implementation do that GB-GP-Parallelisation and
Four-Stage-Parallelisation do not?

3.3 Comparison to handwritten OpenACC

We compared the best solution for each application, for both the automatic
parallelisation approaches, against the handwritten solutions in the SNU-NPB-
ACC suite. In doing so we answered RQ3, What differs between the solutions
produced by GB-GP-Parallelisation, Four-Stage-Parallelisation, and the hand-
written OpenACC implementations? We attempt to explain what the hand-
written solutions do which the solutions produced by the techniques outlined in
this paper do not.

Upon comparing the solutions we find that the most significant difference
is the SNU-NPB-ACC suite’s use of OpenACC’s #pragma acc data directive.
These directives create what are known as ‘data regions’ — scopes of code for
which data created or copied into the GPU will continue to exist until the scope
is completed. For example, #pragma acc data create(x){ <C code scope> }

will create the variable x on the GPU and it will exist on the GPU for the entirety
of the <C code scope> segment. Both GB-GP-Parallelisation and Four-Stage-
Parallelisation place emphasis on the insertion of #pragma acc parallel loop

directives which created an implicit data region for the body of the FOR loop
it parallelises. However, we find (when looking at the handwritten OpenACC
implementations) that significant efficiencies can be gained when ensuring many
parallelised loops exist in the same data region. We also find the SNU-NPB-
ACC suite makes use of acc_malloc, a special function in OpenACC with simi-
lar functionality as the standard C library’s malloc function except it allocates
memory on the hardware accelerator (in this case the GPU) instead of mean
memory. This is another form of data optimisation.

In all the applications within the SNU-NPB-ACC suite we find that all the
loop parallelisations are contained within a single data region. The role of this
common data region is to create commonly utilised variables on the GPU at
the beginning of the programs execution. Then, within this grand data region,
the parallelised FOR loops declare that the data they need is already within
the GPU and, therefore, it is not necessary to carry out the costly operation
of copying from main computer memory or copying back when the loop has
finished processing.

Figure 9 shows some (abridged) source code from the FT application in the
SNU-NPB suite to demonstrate this. The main method contains a data directive
which covers two methods, init_ui and evolve. This data directive ‘creates’
11 arrays on the GPU (these are declared as global variables elsewhere in the
program). Then, whenever a loop is parallelised and requires one of these vari-
ables, the present argument is used, as in unit_ui (line 20). This OpenACC
directive informs the compiler that u0_real, u0_imag, u1_real, u1_imag, and
twiddle are present on the GPU and, therefore, do not need copied over from
maim memory prior to processing or back to main memory after.
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App GB-GP-Parallelisation Four-Stage-Parallelisation Handwritten
BT 0 1 44
CG 1 10 8
EP 3 2 5
FT 0 1 12
LU 0 0 59
MG 1 1 24
SP 0 2 65

Table 2: The number of FOR loop structures parallelised (for nested loops, only
the outermost parallelised loop is counted)

With such a setup it is important to copy the data back to main memory
when it’s needed and update the value in the GPU if changed in main memory
(or vice-versa). OpenACC uses the terminology ‘host’ to refer to the systems
main memory and ‘device’ to refer to the targeted hardware accelerator’s mem-
ory, in this case, that of the GPU. This is the role of the #pragma acc update

host(<variable>) and #pragma acc update device(<variable>) directives.
We find that, in the applications studied, many loops are parallelisable.

However, simply adding a #pragma acc parallel loop directive is insufficient.
For each FOR loop there is an overhead where data must be transferred to the
GPU (device) memory before processing and back to the main (host) memory
after. Frequently, this makes the parallelised version even more costly than
the sequential. However, if these fixed overheads can be shared over multiple
for-loop parallelisations the cost can be reduced. When the #pragma acc data

directive is used effectively the transfer to and from the GPU can be kept at a
minimum and it is this, we find, is when significant gains can be made.

Both our approaches attempt to parallelise FOR loops, toggle their param-
eters, and optimise data flow solely within the FOR loop. It is possible in GB-
GP-Parallelisation for a data directive to be created (it is contained within the
grammar) but the search space is vast. Only in one instance, EP, did we find
a data region being implemented, though this data region did not specify any
variables and covered 3 statements which were not parallelised. This data region
was, therefore, inert. It is clear comparing the solutions found via our approach,
that we must encompass these FOR loop parallelisations into larger data regions.

We find that due to the lack of proper mechanisms to create meaningful
data directives, neither approach parallelises many FOR loop structures. Ta-
ble 2 shows the number of FOR loops champion parallelised solution for GB-
GP-Parallelisation, Four-Stage-Parallelisation, and the handwritten version (for
cases of nested FOR loops, we only count the outer-most parallelisation). As can
be seen, the handwritten implementation frequently parallelises more FOR loops
than either GB-GP-Parallelisation and Four-Stage-Parallelisation.

To emphasise what a dramatic effect correct use of data directives can
have, we took the handwritten version and stripped it from OpenACC data
directives (#pragma acc data ...), update statement (#pragma acc update
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App Handwritten (s) Sequential (s) Handwritten without
data directives (s)

BT 1.90 14.40 3463.23
CG 48.80 7.91 11.74
EP 0.47 25.92 48.11
FT 1.06 7.93 34.64
LU 4.47 5.23 970.11
MG 0.78 5.48 N/A (see text)
SP 1.24 5.48 1484.74

Table 3: The handwritten OpenACC implementation’s execution time com-
pared to its variant without data directives (timeout is 2 hours).

host/device), data parameters on the FOR loop declarations (i.e. copy, copyin,
copyout, create, and present), and replaced instances of acc_malloc with
malloc. In cases where removal of these data directives resulted in a FOR loop
parallelisation being uncompilable we manually removed the parallelisation. We
recorded the execution time prior and after this change. These times can be
seen in Table 3. Even compared to the execution time of the sequential time,
parallelising loops without correctly applying data directives results in signifi-
cantly increased execution time (in the case of MG, removing the data directives
resulted in an error at execution time).

4 Discussion

Both GB-GP-Parallelisation and Four-Stage-Parallelisation employed different
approaches to automatic optimisation. Both reduced execution time by less than
3%, 2.79% for GB-GP-Parallelisation and 2.44% for GB-GP-Parallelisation (av-
eraged over all applications). We consider GB-GP-Parallelisation to be superior
compared to Four-Stage-Parallelisation, not only in that it reduces execution
time by a greater extend, but also that it does not produce any solutions that
are worse than the original, which Four-Stage-Parallelisation does in five of the
seven applications targeted. However, solutions that run in a higher execution
time can easily be reverted back to the original, so GB-GP-Parallelisation’s
superiority is only slight.

In both instances the EP application shows the biggest reduction in execu-
tion time with GB-GP-Parallelisation achieving a 16.56% reduction and Four-
Stage-Parallelisation achieving a 17.09% reduction. This is, perhaps, no surprise
given this application given its full name — ‘embarrassingly parallel’. However,
even in this case, we found we could not match the handwritten OpenACC
implementation’s performance. This handwritten OpenACC implementation is
capable of reducing EP’s execution time is 98.19%. The goal of this research
was not to beat, or even match, that capable of a human expert (though such
results would have been welcome). Rather we wished to develop a technique
that could meaningfully parallelise software automatically. Just as a compiler
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will rarely produce the optimal machine code implementation for a given source,
we do not envision a future in which genetic improvement is unbeatable, but
one in which genetic improvement is ‘good enough’ — so cheap and easy to use
that it can justify its existence on economic grounds. It is difficult to know at
what point genetic improvement can begin to replace human effort, and will
undoubtably differ on case-by-case basis. However, in this case, the optimi-
sations produced by GB-GP-Parallelisation and Four-Stage-Parallelisation are
lower than we would have hoped and below what can be achieved with a skilled
human expert.

Our overarching idea in both the approaches to automatic parallelisation was
to focus on parallelising FOR loops, optimising the data flow in and out of the
loops, and tweaking their parameters. We have found this is too basic an idea
and a more holistic one is required. We have found, when comparing to that
produced by human experts, FOR loops share the same data and managing this
data in a common way can significantly reduce the overheads of parallelisation.
Moving data to and from the GPU is costly and this cost can (and in our
experience, often does) destroy the gains of parallelisation. We believe future
research should focus on this problem. It is one in which search-based techniques
are well equipped. The objective is to optimise at what points data is transferred
to and from main memory. This would not need to be a black-box optimisation
as the source code reveals where data is used. For example, in the case that
two parallelised FOR loops, one after another, use the same variables, it is logical
that these FOR loops should share the same data region as data moved to the
GPU for the first may as well continue to stay there for the second.

Once research has solved this problem we believe that we will begin to see
significant execution time reductions for the applications studied. As is evident,
the NAS Parallel benchmark suite studied consists of applications we know can
be parallelised. We do not see this as a fault in our investigation. This is a
new approach and therefore needs an easy example to try first. Just as we
learn to walk before we learn to run, we target these benchmarks before moving
into more challenging ones. In the medium term, once we have successfully
optimised these benchmarks, we would like to test our techniques on ‘real world’
applications in which there exists no parallelised equivalent to see what can be
achieved, and what other research considerations should be taken into account.
If we can achieve noteworthy results in this domain then the software engineering
community can begin to reap the significant benefits of automatic parallelisation.

5 Conclusion

We have developed two approaches to automatic parallelisation of sequential
software: GB-GP-Parallelisation and Four-Stage-Parallelisation. These approaches
create and insert OpenACC directives into C programs with the goal of de-
creasing execution time by offloading activity to the system’s GPU. GB-GP-
Parallelisation uses grammar-based GP, while Four-Stage-Parallelisation uses
both greedy algorithms and evolutionary strategies across four separate stages
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of optimisation. When attempting to parallelise a sequential implementation of
the NAS Parallel Benchmark suite, we find that GB-GP-Parallelisation reduces
execution time by 2.79% and Four-Stage-Parallelisation by 2.44% on average.
We compare this to the NAS Parallel Benchmark suite with hand-implemented
OpenACC directives. The hand-implemented variant reduces execution time
by 65.68% on average, showing that both GB-GP-Parallelisation and Four-
Stage-Parallelisation fall short of producing the substantial decreases in exe-
cution time we know is possible. We carried out a comparison between the
solutions produces between GB-GP-Parallelisation, Four-Stage-Parallelisation,
and the handwritten OpenACC variant and found GB-GP-Parallelisation and
Four-Stage-Parallelisation both under-perform due to their poor handling of
how program variables are transferred to and from the GPU during program
execution. We would therefore advise future researchers of automatic paral-
lelisation methods to focus their efforts on how to automatically optimise data
transfer to and from the GPU.
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A OpenACC Grammar

OpenACC Grammar

<start>::= <start> <start> | <base>

<base>::= "#pragma acc " <choice>

<choice>::= "parallel " <parallel> <private>

<reduction> <optional_block> <line_number>

| "loop " <loop> <private> <reduction> <loop_line_number>

| "parallel loop " <loop> <parallel> <private> <reduction>

<loop_line_number>

| "kernels " <kernels> <private> <block> <line_number>

| "kernels loop " <loop> <kernels> <private>

<loop_line_number>

| "data " <data> <block> <line_number>

| "cache(" <variables> ") " <top_loop_line_number>

| "atomic " <atomic_clause> <line_number>

| "update " <async> <wait> <update> <line_number>

| "routine " <routine> <function_line_number>

| "wait " <async> <line_number>

| "wait(" <sync_number> ") " <async> <line_number>

<parallel>::= <async> <wait> <num_gangs> <num_workers>

<vector_length> <data> <firstprivate>

<loop>:: = <gang> <worker> <vector> <seq> <collapse>

<auto> <independent>

<kernels>::= <async> <wait> <data>

<data>::= <copy> <copyin> <copyout> <create> <present>

<present_or_copy> <present_or_copyin>

<present_or_copyout> <present_or_create>

<routine>::= <gang_singular><worker_singular> <vector_singular>

<seq>

<update>::= "self(" <variables> ") "

| "host(" <variables> ") "

| "device(" <variables> ") "

| " "

<async>::= "async "

| "async(" <sync_number> ")"

| " "

<wait>::= "wait "

| "wait(" <sync_number> ")"

| " "

<sync_number>::= "1" | "2" | "3" | "4" | "5"

<num_gangs>::= "num_gangs(" <two_power> ") "

| " "

<num_workers>::= "num_workers(" <two_power> ") "

| " "
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<vector_length>::= "vector_length(" <two_power> ") "

| " "

<reduction>::= "reduction(" <reduction_operator> ":" <variables> ")"

| " "

<reduction_operator>::= "+" | "*" | "max" | "min" | "&"

| "|" | "^" | "&&" | "||"

<copy>::= "copy(" <variables> ") "

| " "

<copyin>::= "copyin(" <variables>") "

| " "

<copyout>::= "copyout(" <variables> ") "

| " "

<create>::= "create(" <variables> ") "

| " "

<present>::= "present(" <variables> ") "

| " "

<present_or_copy>::= "present_or_copy(" <variables> ") "

| " "

<present_or_copyin>::= "present_or_copyin(" <variables> ") "

| " "

<present_or_copyout>::= "present_or_copyout(" <variables> ") "

| " "

<present_or_create>::= "present_or_create(" <variables> ") "

| " "

<private>::= "private(" <variables> ") "

| " "

<firstprivate>::= "firstprivate(" <variables> ") "

| " "

<collapse>::= "collapse(" <collapse_number> ") "

| " "

<collapse_number>::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9" | "10"

<gang>::= <gang_singular>

| "gang(" <two_power> ") "

<gang_singular>::= "gang " | " "

<worker>::= <worker_singular>

| "worker(" <two_power> ") "

<worker_singular>::= "worker " | " "

<vector>::= <vector_singular>

| "vector(" <two_power> ") "

<vector_singular>::= "vector " | " "

<seq>::= "seq "

| " "

<auto>::= "auto "

| " "

<independent>::= "independent "
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| " "

<atomic_clause>::= "read "

| "write "

| "capture "

| "update " <optional_block>

<optional_block>::= <block>

| " "

<two_power>::= "2" | "4" | "8" | "16" | "32" | "64" | "128" | "256"

| "512" | "1024"

<block>::= "\n{ " <block_placeholder>

<variables>::= <variable>

| <variable> "," <variables>

<variable>::= <variable_placeholder>

<block_placeholder>::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9" | "10" | "11" | "12" | "13" | "14" | "15" | "16" | "17" | "18"

| "19" | "20" | "21" | "22" | "23" | "24" | "25" | "26" | "27" | "28"

| "29" | "30" | "31" | "32" | "33" | "34" | "35" | "36" | "37" | "38"

| "39" | "40" | "41" | "42" | "43" | "44" | "45" | "46" | "47" | "48"

| "49" | "50" | "51" | "52" | "53" | "54" | "55" | "56" | "57" | "58"

| "59" | "60" | "61" | "62" | "63" | "64" | "65" | "66" | "67" | "68"

| "69" | "70" | "71" | "72" | "73" | "74" | "75" | "76" | "77" | "78"

| "79" | "80" | "81" | "82" | "83" | "84" | "85" | "86" | "87" | "88"

| "89" | "90" | "91" | "92" | "93" | "94" | "95" | "96" | "97" | "98"

| "99" | "100"

<variable_placeholder>::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9" | "10" | "11" | "12" | "13" | "14" | "15" | "16" | "17" | "18"

| "19" | "20" | "21" | "22" | "23" | "24" | "25" | "26" | "27" | "28"

| "29" | "30" | "31" | "32" | "33" | "34" | "35" | "36" | "37" | "38"

| "39" | "40" | "41" | "42" | "43" | "44" | "45" | "46" | "47" | "48"

| "49" | "50" | "51" | "52" | "53" | "54" | "55" | "56" | "57" | "58"

| "59" | "60" | "61" | "62" | "63" | "64" | "65" | "66" | "67" | "68"

| "69" | "70" | "71" | "72" | "73" | "74" | "75" | "76" | "77" | "78"

| "79" | "80" | "81" | "82" | "83" | "84" | "85" | "86" | "87" | "88"

| "89" | "90" | "91" | "92" | "93" | "94" | "95" | "96" | "97" | "98"

| "99" | "100"
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App Input class
BT Custom∗

CG Custom∗

EP A
FT A
LU W
MG B
SP W

Table 4: The SNU-NPB applications targeted and the testcase used for evalua-
tion. ∗Custom input classes defined in text.

B DawnCC Investigation

DawnCC is a compiler module which automatically detects parallelisable code
in C/C++ programs and then inserts OpenACC or OpenMP directives where
appropriate [12]. We carried out a small investigation to determine DawnCC’s
performance when inserting OpenACC directives on the Seoul National Uni-
versity NAS Parallel Benchmark suite (SNU-NPB) [6]. The SNU-NPB suite
contains sequential versions of seven applications known to be parallelisable
using OpenACC [18].

B.1 Experiment setup

Our experiment to evaluate DawnCC’s performance was quite simple. For each
application within the SNU-NPB suite we ran DawnCC 3 to produce a variant
which contained OpenACC directives. We ran both the sequential and DawnCC
variant of each application 100 times, on a test case (selection discussed below).
We then compared the means of these runs, and whether they were statisti-
cally significant (using the Wilocoxon Rank Sum test) to determine DawnCC’s
effectiveness.

Table 4 shows the apps from the SNU-NPB suite and the test cases we used
to evaluate DawnCC against for each application. The applications in the SNU-
NPB suite each have a set of input classes (input data with corresponding output
data; essentially a black box test). To evaluate the original and the DawnCC
variant, we selected the input class that ran in greater that 5 seconds (so that
smaller reductions in execution time could be detectable and not confused with
statistical variance) and less than 30 seconds (in the interests of keeping exper-
iment times low). If two or more input classes fell within this range then the
one with the lowest execution time was chosen. If there were no input classes a
custom input class was created.

Both BT and CG required custom classes to be created. A problem class
for BT was created with 40x40x40 grids over 200 time steps with DT equal

3As available from the DawnCC GitHub [1] on the 7th of November 2017.
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App Sequential Mean (s) DawnCC Mean (s) Wilcoxon Rank Sum
Test p-value

BT 15.35 73.20 � 0.001
CG 8.43 11.26 � 0.001
EP 21.92 27.65 � 0.001
FT 8.54 8.51 0.670
LU 5.77 8.76 � 0.001
MG 8.06 8.17 0.005
SP 5.69 5.74 0.009

Table 5: DawnCC’s performance on the SNU-NPB suite’s sequential implemen-
tation.

to 0.8× 10−3.For CG we setup a problem class with a size of 30,000 over 30
iterations.

Experiments were carried out on an Ubuntu 14.04.5 LTS Desktop system
with an Intel Core i5-650 processor (3.2 GHz, 2 cores), 4GB of RAM and an
nVidia GeForce GTX 1060 GPU. The code was compiled using the PGI 17.4-0
C compiler.

B.2 Experiment results

Table 5 shows the results from the experiments. We found that in no case
did the DawnCC variant decrease execution time. Of the seven applications
studied, six are found to increase execution by a statistically significant extent
(p < 0.01), with the the SP DawnCC variant having no statistically significant
influence on execution time.
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1 int main ( int argc , char ∗argv [ ] ) {
2 #pragma acc dta c r e a t e ( u0 rea l , u0 imag ,\\
3 u1 rea l , u1 imag , u r ea l , u imag , twiddle ,\\
4 g ty1 r ea l , gty1 imag , g ty2 r ea l , gty2 imag )
5 {
6 i n i t u i ( dims [ 0 ] , dims [ 1 ] , dims [ 2 ] ) ;
7 . . .
8 for ( i t e r = 1 ; i t e r <=n i t e r ; i t e r++){
9 evo lve ( dims [ 0 ] , dims [ 1 ] , dims [ 2 ] ) ;

10 . . .
11 }
12 . . .
13 }
14 . . .
15 }
16
17
18 stat ic void i n i t u i ( int d1 , int d2 , int d3 ){
19 int i , j , k ;
20 #pragma acc p a r a l l e l loop num gangs ( d3 ) num workers (8)\\
21 v e c t o r l e ng th (128) pre sent ( u0 rea l , u0 imag ,\\
22 u1 rea l , u1 imag , twidd le )
23 for ( k=0; k < d3 ; k++){
24 for ( j =0; j < d2 ; j++){
25 for ( i =0; i < d1 ; i++){
26 u0 r e a l [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] = 0 . 0 ;
27 u0 imag [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] = 0 . 0 ;
28 u1 r e a l [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] = 0 . 0 ;
29 u1 imag [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] = 0 . 0 ;
30 twidd le [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] = 0 . 0 ;
31 }
32 }
33 }
34 }
35
36 stat ic void evo lve ( int d1 , int d2 , int d3 ){
37 int i , j , k ;
38 #pragma acc p a r a l l e l loop pre sent ( u r ea l , u0 imag ,\\
39 u1 rea l , u1 imag , twidd le )
40 for ( k=0; k < d3 ; k++){
41 for ( j =0; j < d2 ; j++){
42 u0 r e a l [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] = \\
43 u0 r e a l [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] \\
44 ∗ twidd le [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] ;
45 u0 imag [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] = \\
46 u0 imag [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] \\
47 ∗ twidd le [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] ;
48 u1 r e a l [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] = \\
49 u0 r e a l [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] ;
50 u1 imag [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] = \\
51 u0 imag [ k∗d2 ∗( d1+1) + j ∗( d1+1) + i ] ;
52 }
53 }
54 }

Figure 9: Example usage of OpenACC data directive
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