
Approximate Oracles and Synergy
in Software Energy Search Spaces

Bobby R. Bruce , Justyna Petke , Mark Harman , and Earl T. Barr

Abstract—Reducing the energy consumption of software systems through optimisation techniques such as genetic improvement is

gaining interest. However, efficient and effective improvement of software systems requires a better understanding of the code-change

search space. One important choice practitioners have is whether to preserve the system’s original output or permit approximation,

with each scenario having its own search space characteristics. When output preservation is a hard constraint, we report that the

maximum energy reduction achievable by the modification operators is 2.69 percent (0.76 percent on average). By contrast, this figure

increases dramatically to 95.60 percent (33.90 percent on average) when approximation is permitted, indicating the critical importance

of approximate output quality assessment for code optimisation. We investigate synergy, a phenomenon that occurs when

simultaneously applied source code modifications produce an effect greater than their individual sum. Our results reveal that 12.0

percent of all joint code modifications produced such a synergistic effect, though 38.5 percent produce an antagonistic interaction in

which simultaneously applied modifications are less effective than when applied individually. This highlights the need for more

advanced search-based techniques.

Index Terms—Search-based software engineering, search space, energy consumption, genetic improvement, synergy, antagonism, oracle,

approximation

Ç

1 INTRODUCTION

REDUCING energy consumption is an increasingly impor-
tant software engineering concern. In 2010, large server

clusters consumed 1.12–1.50 percent of global energy
consumption [30]: an amount equivalent to that consumed
by the United Kingdom in 2015 [12]. Environmentally un-
friendly sources generate much of this energy: in 2013,
67 percent of global energy consumption derived from
burning fossil fuels, with 41 percent generated from the
most highly-polluting of all sources, coal [6]. Using a variety
of search techniques [23], recent studies have shown how to
reduce the energy consumption of software given reason-
able assumptions about the end-use of the improved soft-
ware system such as the likely input data [15], network
usage information [39], and tolerance to less desirable user-
interfaces [42].

Reducing energy consumption via the search-based
modification of software systems is an instance of ‘Genetic
Improvement’ (GI) [52]. To genetically improve a program,
search techniques modify software with the goal of con-
structing related versions that retain some important prop-
erties while improving others. GI research, hitherto, has
been dominated by three operators: delete, copy, and replace

applied to source code lines1 [34], [35], [53]. The delete opera-
tor deletes a line of code; copy copies a line of code to another
location; and replace replaces a line of code with another. The
challenge in GI research is designing search techniques to
select a subset of all possible modifications that may then be
applied to the target software to produce an optimal (or near
optimal) solution. Until now, there has been little effort put to
analysing the search space these operators produce, and that
must be subsequently traversed, when optimising software’s
energy consumption. This is unfortunate as GI practitioners
have much to gain from understanding the characteristics of
these search spaces.

The delete, copy, and replace operators generate an infinite
search space, bounded by the number of copy operator appli-
cations. Even when restricted to a single operation, the
search space remains large. For a program with N lines of
code, every line can be deleted (N), copied into the program
before existing lines (N2), or replaced with any other line but
itself (N2 �N). In this study, the smallest application we
investigate, Bodytrack, has 1,030 modifiable lines of code
and, thus, over 2million possible variants generated by a sin-
gle application of an operator. GI techniques typically restrict
the search by selecting a subset of the software system for
modification. This subset is usually chosen by an expert with
intimate knowledge of the system or via profiling; selecting
lines/files/components/etc. based on their likelihood of
impacting the target non-functional property. In practice,
even this restricted search space remains vast. The necessity
for well-designed search techniques is clear, though the

� The authors are with the University College London, London WC1E 6BT,
United Kingdom.
E-mail: r.bruce@cs.ucl.ac.uk, {j.petke, mark.harman, e.barr}@ucl.ac.uk.

Manuscript received 10 Mar. 2017; revised 23 Feb. 2018; accepted 20 Mar.
2018. Date of publication 16 Apr. 2018; date of current version 12 Nov. 2019.
(Corresponding author: Bobby R. Bruce.)
Recommended for acceptance by S. Apel.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TSE.2018.2827066

1. Other GI work has also modified software at the binary and
assembly levels [32], [55].

1150 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 11, NOVEMBER 2019

0098-5589� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6070-9722
https://orcid.org/0000-0001-6070-9722
https://orcid.org/0000-0001-6070-9722
https://orcid.org/0000-0001-6070-9722
https://orcid.org/0000-0001-6070-9722
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-7833-6044
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0002-5864-4488
https://orcid.org/0000-0003-0771-7891
https://orcid.org/0000-0003-0771-7891
https://orcid.org/0000-0003-0771-7891
https://orcid.org/0000-0003-0771-7891
https://orcid.org/0000-0003-0771-7891
mailto:
mailto:

information required to effectively design one is not pres-
ently available. The aim of this investigation is to gain gre-
ater understanding of the search space and considerations
researchers should take when optimising software’s energy
consumption using GI.

When software is optimised using GI, an oracle must be
provided. An oracle verifies a modified software’s correct-
ness [8]. In genetic improvement it is often a well-designed
test-suite, though it can be anything which conforms to this
definition. In this work, we focus on opportunities for energy
improvement under two different test oracles—exact and
approximate. An exact test oracle requires the original and
improved programs to produce identical output, while an
approximate test oracle uses a more relaxed notion of
whether the output from the improved program is accept-
able. In this investigation, we use test suites to determine the
correctness of an application and, therefore, we wish to
emphasise that, when we say ‘exact’ or ‘approximate’, it is
exact or approximate modulo a test suite. Each of these test
oracles produce their own search space, both applicable to GI
research and both worthy of study. Approximate test oracles
permit trading quality attributes against energy consump-
tion, which previous work on energy improvement (using GI
and other techniques) has shown effective. For example, a
mobile application can trade the aesthetics of a user-inter-
face [42] while a graphics-based application can trade image
quality [57]. In such cases, deviation from the precise output
of the original may be tolerable if a decrease in energy con-
sumption is observed. In a survey of software engineers
responsible for systems in which energy consumption is a
concern, the majority (80 percent) were willing to sacrifice
certain requirements for reduced energy consumption [43].

For this study, we analyse the search space of four sys-
tems—7zip, Bodytrack, Ferret, and OMXPlayer. For each,
we define, justify, and investigate approximate oracles that
make domain-specific trade-offs between energy consump-
tion and solution quality. We are interested in knowing at
what frequency effective modifications exist in this search
space, what impact they are capable of producing, and how
this varies between exact and approximate test oracles.

Most previous energy optimisation work in software
engineering has used indirect measures of energy consump-
tion. Examples are tools which estimate energy by logging
processor states [15], monitoring bytecode execution [16], or
via simulation of hardware [61]. They interpolate energy
from correlated measurements. Indirect measurements are
typically close to actual energy consumption, but their error
is often unknown. Given that improvements reported hith-
erto are relatively modest (in the range of a few percent to a
few tens of percent), it is important to quantify measure-
ment error. To this end, we conduct our experiments on a
suite of 6 MAGEEC energy measurement boards [2], con-
nected to a cluster of 25 Raspberry Pi devices [4]. The use of
MAGEEC boards allows us to take direct energy measure-
ments. That is, energy is measured directly rather than
through a proxy. We chose to monitor the energy of soft-
ware running on Raspberry Pi devices as they are a simple,
cheap, widely available, and easily configurable platform.

This Raspberry Pi cluster enables us to distribute software
variants across different physical devices. We are not the first
to use direct energy measurements; the GreenMiner project

used direct energy measurements to determine the energy
consumption of Android mobile applications [27], for exam-
ple. However, we are, to the best of our knowledge, the first
to evaluate energy consumption in this distributed format.
As such, we can take many more measurements than we
would otherwise be able to and can thereby quantify statisti-
cal error, like ‘background noise’, by reporting the averages
found over many runs. A key finding of ours is that individ-
ual devices exhibit systematic error [58]. We find energy
changes reported in Joules can vary considerably across dif-
ferent devices even when the statistical error within a single
device is small. In future work, it is paramount that such sys-
tematic error is properly addressed.Within our investigation,
we find the proportional change in energy measurements is
stable across all devices and therefore report results as pro-
portional increases or decreases.

This setup enables us to understand the properties of the
energy search space by measuring the energy consumed
when running software modified by the delete, copy, and
replace operators. We can analyse both the local neighbour-
hood (a single modification) and beyond (multiple modifi-
cations), allowing us to give insight to GI practitioners.

If we were to find that the local search space is flat (i.e., a
single modification is incapable of, or rarely produces, a sig-
nificant proportional change in energy consumption), then
we could conclude that either the delete, copy, and replace
operators are relatively ineffective or a highly explorative
search technique is required to optimise software. Alterna-
tively, if we find the local search space to be on a steady gra-
dient, then the search-based algorithm should be based on
exploitation (such as a hill-climbing algorithm) and, depend-
ing on the incline, may suggest that GI researchers intuitions
are correct—the delete, copy, and replace are effective.

The nature of thewider search space can be determined by
combining modifications and noting their interaction. In our
investigation, we observe instances when adding or remov-
ing a set of modifications produces a good solution but add-
ing or removing a subset produces a much less effective
solution.We refer to this as synergy, a specific form of interac-
tionwhere the improvement of simultaneously appliedmod-
ifications exceeds the sum of applying each in isolation [9].
We also observe antagonism, another form of interaction that
is the opposite of synergy. Antagonism occurs when the
effectiveness of a solution worsens as modifications are com-
bined in comparison to when they are applied individually.
If antagonism is infrequent, then a greedy approach would
be sufficient in combining modifications; simply sample
modifications uniformly, evaluate them and, if they are
found to be effective, add them to a list of good mutations to
then be applied en-masse at the end of the process. In our
investigation we find that antagonism occurs in 38.5 percent
of all modification pairings—a frequency high enough to jus-
tifymore advanced search techniques.

We investigate the search space and provide considera-
tions researchers should take when optimising software’s
energy efficiency using GI. This paper makes three main
contributions:

(1) The investigation shows how real-world energy
measures can be made while taking into account the
effects of per-device statistical error and systematic
error across devices.

BRUCE ETAL.: APPROXIMATE ORACLES AND SYNERGY IN SOFTWARE ENERGYSEARCH SPACES 1151

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

(2) Software testing traditionally relies on exact oracles
that do not tolerate output deviations; we show that
approximate oracles, which tolerate output devia-
tions, open the door to greater energy savings via
genetic improvement.

(3) Software changes that alter an application’s energy
consumption may interact: sometimes synergistically
and sometimes antagonistically. We show that this
phenomenon is ubiquitous, implying sophisticated
search must be used when optimising software’s
energy efficiency.

2 MOTIVATING EXAMPLE

The key to understanding the search space of energy-effi-
cient software optimisations is to know at what frequency
effective modifications occur, what impact they are capable
of producing, and whether synergy and antagonism are
common. We find these using both approximate and exact
test oracles. This section provides a motivating example to
explain these concepts.

In Fig. 1, ‘Mod_1’ swaps a method that aggregates a list
(at line 9) with one that samples. This increases the approxi-
mation of getPropery’s output but may achieve consider-
able energy savings because of sampling’s relative
efficiency. This is the type of modification that an approxi-
mate test oracle allows.

If we further assume the input to the method sample is
sorted, then line 14, input = sort (input);, is not
required. The software engineer responsible for this line
may have included it to ensure robustness or due to a lack
of knowledge about the contract that the sample method
obeys. Regardless, guided by a sufficiently adequate test
suite, GI can remove such redundancies when using an
exact test oracle. In previous GI work by Petke et al. [53]
and later Bruce et al. [15], such optimisations were found
when deleting complex assertions in MiniSAT’s Solver.c
class. The ‘Mod_2’ example is similar; an exact test oracle
can find the modification, since it does not affect the
software’s output, only its target non-functional property.

It is tempting to pursue the modifications found by the
exact oracle exclusively, as they produce benefits without
cost. However, if we permit the quality of output to degrade

(i.e., permit approximate output), then this should increase
the set of valid solutions in the search space and facilitate
the search for even more energy-efficient solutions. We are
the first to quantify the frequency of these modifications
and measure their interactions. Fig. 1 demonstrates syner-
gistic software modifications. ‘Mod_1’ decreases the num-
ber of times in which the more energy inefficient method
aggregate executes by replacing it with sample while
‘Mod_2’ increases the efficiency of sample.

The equations below explain the basic mathematics of
this synergistic interaction. The energy consumed by the
program mp equals the sum of mg, the energy consumed by
getProperty, multiplied by Ng, the number of runs, and
ms, the energy consumed by sample, multiplied by Ns, the
number of samples. In our example, Ng � 1 and Ns � 1.
Activity outside these methods is assumed to be constant
and is represented bymo and thus we have

mp ¼ msNs þmgNg þmo:

‘Mod_1’ changes getProperty to call sample instead
of aggregate. The energy consumption of getProperty
thereby includes the energy of a single iteration of sample
plus the remainder of getProperty minus the call to
aggregate, ma. So when Mod_1 is applied, mg ! mg�
ma þms and we have

mp ¼ msNs þ ðmg �ma þmsÞNg þmo;

‘Mod_2’ decreases the energy consumption of sample, ms.
With ‘Mod_1’ present, energy is reduced in both msNs, and
in getProperty, formally mgNg is now ðmg �maþ msÞNg.
Without ‘Mod_1’, ‘Mod_2’ only affects the energy con-
sumed in sample, however, with ‘Mod_1’, ‘Mod_2’ may
reduce energy consumption in both functions. In this inves-
tigation, we wish to understand how frequent these syner-
gistic (or, the opposite—antagonistic) interactions occur
within the search space.

3 METHODOLOGY

In this section, we explain the design and implementation of
our measurement framework. We then discuss our source
code representation and how we modify it before explain-
ing how we compare the effectiveness and energy efficiency
of a program and one of its variants, under both exact and
approximate test oracles. Finally, we introduce our system
for classifying interactions between modifications.

3.1 Measurement Framework

Given a set of modifications, we seek tomeasure the effect on
the energy consumption when each is applied to the target
application. In theory, the setup is simple: take a program
(modified or otherwise) along with an input and measure its
energy consumption during execution. In practice, however,
it is not so simple: one must choose between direct and indi-
rect measurement and contendwith the cost of taking a mea-
surement, since program execution can be expensive.

Most previous search-based approaches to optimising
the energy efficiency of software have estimated energy
consumption [15], [16], [61]. These estimates can miss
important high or low energy events thereby directing the

Fig. 1. Two software modifications: Aggregate consumes more energy
than sample; Mod_1 replaces aggregate with sample, which does
not need sorted inputs, so Mod_ 2 combines with Mod_1 to further
reduce energy consumption.

1152 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

search away from an optimal solution. The only guaranteed
way to capture these events is to ensure the framework
makes direct energy measurements rather than relying on
either estimates or simulation.

Programs are one component of a larger system: the com-
puter that executes them. At present, one cannot directly
measure the energy consumption of a program, because
existing devices do not expose the coupling points between
hardware components or operating system’s processes. One
can, however, directly measure the energy consumption of
the entire computing system; this is what we chose to do in
this investigation. Measuring the whole system carries with
it the challenge of contending with statistical measurement
error due to events external to the program, like OS back-
ground processes. We mitigate these effects by taking multi-
ple measurements and averaging the results.

Directly measuring the energy consumption of a pro-
gram entails running it, and, as we have just argued, the
system that hosts it. Thus, taking multiple direct measure-
ments exacerbates measurement cost. It thereby follows
that our framework must be efficient and scalable. For
instance, the experiments outlined in Section 6 require the
evaluation of 28,000 modifications (some of which can take
up to five minutes to evaluate), across 4 applications, with
each modification run multiple times against a test suite.
Fortunately, this task is easily parallelisable, and our
framework exploits this: it is a cluster of individual com-
puter systems, each of which can measure its own energy
consumption. Jobs (programs, modified or otherwise,
along with input data) are sent from a client to the cluster’s
master node. The master node then distributes jobs to
nodes (a maximum of one job running on any given node
at any one time). These nodes then measure their energy
consumption while running these jobs. The energy meas-
urements, along with the outputs from each job, is then
returned to the client via the master node. Fig. 2 shows our
framework’s layout with 2 nodes.

The nodes in this cluster are Raspberry Pi 2 Model B
devices [4], each running Raspbian OS [5], a GNU/Linux
OS based on Debian. The Raspberry Pis were chosen as they
provide a cheap computer system representative of a real-
world system in terms of architecture and their running of a
Unix-based operating system. Each Raspberry Pi node can
measure its own energy consumption via a MAGEEC
Energy Measurement Board [2].

The MAGEEC Energy Measurement boards are simple,
inexpensive devices which sample the voltage drop across a
resistor inline to the target’s power supply (i.e., the Rasp-
berry Pis’ power cable in our case) at a sustained rate of
2MHz. A micro-controller on the MAGEEC Energy Mea-
surement board listens for start and stop commands over a
USB connection. When a start command is received the
micro-controller begins sampling measurements and sends
readings across the USB connection until a stop command is
received. The MAGEEC board is controlled by a separate
Raspberry Pi device (we refer to this as the ‘measurement
board controller’) that is responsible for issuing the start
and stop requests and reading energy data from the USB
connection. As all the Raspberry Pi devices (nodes and mea-
surement board controllers) are on the same network, nodes
send requests to their respective measurement board con-
troller to start, stop, and receive energy measurements.
Each MAGEEC board can measure up to three targets at
once and, therefore, the ratio is three Raspberry Pi nodes to
every MAGEEC board plus an additional Raspberry Pi (the
measurement board controller) to manage the readings, and
the start and stop commands.

For clarity, here is an abstracted view of how a job is run
from the point of view of a node:

(1) Receive a job from the master node.
(2) Setup the job environment (typically decompressing

files and moving them to the correct directories).
(3) Send a message to the measurement board controller

to begin energy readings.
(4) Run the job.
(5) Send a message to the measurement board controller

to stop energy readings.
(6) Request the energy reading from the measurement

board control.
(7) Send the output of the job and the energy reading

back to the master node.
This setup mitigates the costly process of evaluating

many thousands of modifications and can easily be
expanded if needed. The relatively inexpensive components
are an advantage compared to alternative approaches,
allowing for more nodes than would otherwise be possible.
As we discuss in Section 6.1, the MAGEEC energy measure-
ment framework is incapable of producing results with the
level of accuracy that we would deem acceptable for most
investigations and, as such, have had to report proportional
measurement increases/decreases which we find are reli-
able. As in most endeavours, there is a clear trade-off
between quantity and quality of hardware.

3.2 Producing Variants

As previously noted, we use three genetic improvement
operators: copy, delete, and replace, each of which is applied
at the source code line level. We apply these to a simple
tagged representation of source code; a representation spe-
cially created for GI research, first introduced by Langdon
and Harman in 2010 [33], and later utilised in a variety of
other GI work [34], [35], [53]. We refer to this format as the
Langdon format.

To translate code to the Langdon format each line is
labelled with a unique identifier. These identifiers indicate

Fig. 2. Diagram of the energy measurement cluster, showing two nodes
measured by a single energy measurement board.

BRUCE ETAL.: APPROXIMATE ORACLES AND SYNERGY IN SOFTWARE ENERGYSEARCH SPACES 1153

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

whether a line is modifiable or not. Unmodifiable identifiers
begin with <{FILE}. Opening and closing curly brackets,
variable initialisations, and function declarations, are
unmodifiable. In the case of IF, WHILE, and FOR, only the
conditions, and the pre- and post-statements in the case of
FOR, can be modified. Fig. 3 shows a snippet of source code
in the Langdon format.

At present, tools to transform code into the Langdon for-
mat exist only for C/C++ code so we target only C/C++
applications in this investigation. As the operators to be
applied operate on source code lines, the targeted code is
formatted so that each statement is on its own separate line
to avoid modifications being applied to multiple statements.
Opening and closing curly brackets are moved to their own
line so any modifications to lines containing a statement do
not interfere with program scopes. In order to reduce errors,
we also ensure the bodies of bracketless one-statement
FOR/WHILE/IF constructs are refactored to be enclosed
within curly brackets.

Once converted to the Langdon format the source code
can be modified by simply deleting, replacing, or copying a
tag, taking into account the aforementioned restrictions. It
can then be expanded back to the original source code by
taking the unmodifiable lines then expanding them. For
example, in Fig. 3 <LzFind_262>, an unmodifiable line,
references <_LzFind_262>. When converted back to
source code <LzFind_262> is expanded to produce
MatchFinder_ReadBlock(p);\n.

Fig. 4 shows an example of how modifications generated
by the copy, delete, and replace operators are represented and
combined. A modifiable identifier alone, <LINE_ID>, is a
delete; a modifiable identifier followed, without a space, by
another, <LINE1_ID><LINE2_ID> is a replace that repla-
ces the former with the latter; and two identifiers separated
by +,<LINE1_ID>+<LINE2_ID>, is a copy operation that
copies one line (the latter) to another area of the source code
(above the former). A space separatesmultiple operations.

Outside of this representation, we apply some restric-
tions. First we restrict replace so that the condition of an IF,
FOR, or WHILE statement can only be replaced with the con-
dition of a matching statement. For example, an IF’s condi-
tional can only replace another IF’s conditional. A FOR’s
pre-statement can only replace another FOR’s pre-statement,
and the post-statement with another FOR’s post-statement.
When the delete operator is applied to a conditional clause,
it replaces the conditional with false; this is equivalent to
the deletion of the IF, FOR, or WHILE body. For example,
the delete operator transforms if(i < 10) to if(false).

In line with previous uses of the Langdon format, we
limit the search space by restricting the copy and replace
operations to a single file, e.g., a line from file X can only be
copied to another location in file X. This restriction

significantly decreases the number of compilation errors
related to out-of-scope variables and methods.

3.3 Assessing Individual Modifications

As we noted in our introduction, the search space of possi-
ble modifications is vast, too vast to analyse exhaustively.
We therefore choose to uniformly sample it.

Formally, we define a modification as follows:

Definition 1 (Program Modification). A program modifica-
tion is a pair d ¼ ðe;~lÞ where e 2 fcopy, delete, replaceg and ~l
is a pair of program locations.

Remark. We require locations~l to be a pair, since copy and
replace operations require two program locations.

We apply modifications chosen uniformly at random to
lines tagged as modifiable in the Langdon format (let this
number be n). We then add individual modifications that
compile to what we refer to as the Modification Set until the
cardinality of this set is 2n.

Algorithm 1. The Filtering Step

Input: E, a set of modifications (Def. 1)
P , the target software
T , the set of testcases
N , the number of energy measurements

1: t uniformSelection(T)
2: MP fg # A set of energy measurements
3: for 1..N do
4: MP MP [fmðP ðtÞÞg
5: end for
6: ½bl; bh� ¼ CI ðMP Þ # We discard bh; CI defined in text
7: E0 {}
8: for d 2 E do
9: P 0 applyMod(P , d)
10: J mðO0p P 0ðtÞÞ
11: if testOracle(O0P , t) ^ J < bl then
12: E0 E0 [fdg
13: end if
14: end for
15: return E0

Even when sampling, we cannot evaluate every variant
against all available testcases. Variants that are inert, pro-
duce software that breaks hard-constraints or increase

Fig. 3. A snippet from LzFind.c, a 7zip file, in the Langdon format. Lines
starting with <LzFind are unmodifiable.

Fig. 4. Four examples of modifications that may be applied to LzFind.c.

1154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

energy consumption are uninteresting. In previous work, we
observed that these variants make up the majority of any
given local search space [15]. Therefore, we filter them out.

Algorithm 1 presents our filtering algorithm. The algo-
rithm evaluates members of the modification set, E. First, it
uniformly selects a testcase t from a the set of testcases T .
Then, at lines 3 to 5 the algorithm runs the original program
P using test t with its energy measured via function m for
N times (100 in this case). The set of energy measurements
MP is then used to determine the 95 percent confidence
interval lower bound, bl. In lines 8 to 14, for each modifica-
tion d in the modification set E, we apply the modification
to the program, thereby creating a program variant P 0. We
then record the output of the program O0p, and measure the
energy consumption, J (Joules), of this program variant. If
the variant passes the testcase (validated using an oracle)
and its energy consumption is less than the 95 percent confi-
dence interval (CI) of the mean lower bound, we add the
modification to the Candidate modification set, E0. After this
filtering step, the Candidate modification set contains those
modifications for which we can say, with statistical confi-
dence, an improvement in energy efficiency has been
observed while still passing the testcase.

It should be noted that ‘passing’ a testcase in this instance
does not necessarily mean producing the same output as the
original, it may be approximated. For example, in the case of
7zip to pass a testcase, the application must compress the
testcase in a manner that it may be decompressed to its orig-
inal state though the compressed file generated by a pro-
gram variant is permitted to differ from that produced by
the original application. Section 5 precisely describes the cri-
teria used for the exact and approximate test oracles. These
criteria determine whether the software variants pass or fail
for a given input.

Algorithm 2. The Evaluation Step

Input: E0, the set of modifications (Def. 1)
P , the target software
T , the set of testcases
N , the number of energy measurements

1: D {} #Collection of modification data
2: for t 2 T do
3: OP P ðtÞ
4: for 1..N do
5: J mðP ðtÞÞ
6: D.addRecord(?, t, J , 0, true)
7: end for
8: for d 2 E0 do
9: P 0 applyMod(P , d)
10: for 1..N do
11: J mðO0p P 0ðtÞÞ
12: p testOracle(t, O0P)
13: a getApproxVal(OP , O

0
P)

14: D.addRecord(d, t, J , a, p)
15: end for
16: end for
17: end for
18: returnD

Algorithm 2 presents the pseudocode that explains how
we gather data to evaluate the candidate modification set.

For each testcase, t, the unmodified software is run N times
(N is 30 in our investigation) with its energy, J , measured
on each iteration via function m (line 5). Then, again for
each testcase, at line 9 each candidate modification d is
applied to the unmodified software to produce the modified
variant, P 0. The modified variant then processes the testcase
with its energy J measured and its output O0P recorded for
N iterations. We subsequently use this data to determine
whether a modification produces a statistically significant
reduction in energy consumption, using the Mann-Whitney
U test (for the a level 0.05).

At line 12 of the algorithm, we record whether the soft-
ware variant has passed the testcase, and, at line 13, we
determine the Approximation Value, a, our unified approach
to recording values from both exact and approximate
oracles. The formula for both the approximation value and
what passing a testcase means for each application is
defined in Section 5.

In all cases, an approximation value of zero denotes satis-
faction of the exact oracle—that is, the output of themodified
program corresponds to the output of the original program
(modulo the testcases). However, the results of the approxi-
mation value can be non-zero, with higher approximation
values corresponding to greater degrees of approximation.
The calculation of the approximation value is unique to the
application domain and therefore approximation values
from different applications cannot be directly compared. If a
new application were to be introduced, the calculation of
that application’s approximation value would have to be cre-
ated by an expert with domain knowledge. Our common
terminology serves to combine very different measures of
approximation. We define the four domain-specific approxi-
mation criteria we use in this investigation in Section 5.

3.4 Classifying Interactions of Multiple
Modifications

Within this investigation, we wish to study how modifica-
tions interact. In obtaining the data to do so, we take two
effective modifications (those known to pass all tests and
reduce energy consumption) andmeasure their energywhen
applied to a piece of software both individually then when
combined. The difficulty lies in interpreting the results. To do
so, we label an interaction in accordance to its placewithin an
Interaction Spectrum outlined in the following definitions.

Definition 2 (Patch). A patch D is a non-empty sequence of
modifications d (Definition 1).

Remark. In the case where a location within the software is
modified, and that location is subsequently used by
another modification later in the sequence, the new value
of that location is used (i.e., the value of that location after
the preceding modifications have been applied). For
example, if line X is deleted via the delete operation, and
then line Y is replaced with the value of line X via the
replace operation, it is a deleted (i.e., blank) line that line Y
is replaced with.

Definition 3 (Interaction Spectrum). Let rðPDÞ denote the
reduction in energy measurement when patch D is applied to
program P . Formally, rðPDÞ ¼ mðP Þ �mðPDÞ, wherem is our
energy measurement function. Two patches D1 and D2 interact

BRUCE ETAL.: APPROXIMATE ORACLES AND SYNERGY IN SOFTWARE ENERGYSEARCH SPACES 1155

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

when the measure of their joint and independent application dif-
fers. Formally, rðPD1D2

Þ 6¼ rðPD1
Þ þ rðPD2

Þ. Fig. 5 shows this
interaction spectrum partitioned into three categories:

Synergy : rðPD1D2
Þ > rðPD1Þ þ rðPD2

Þ
Weak Antagonism : rðPD1D2

Þ < rðPD1Þ þ rðPD2
Þ

^ rðPD1D2Þ > maxðrðPD1
Þ; rðPD2

ÞÞ
Antagonism : rðPD1D2

Þ < rðPD1Þ þ rðPD2
Þ

^ rðPD1D2Þ < maxðrðPD1
Þ; rðPD2

ÞÞ

Remark. We classify an interaction as synergistic when the
joint application of two patches has a greater effect than
assuming no interaction. When weak antagonism occurs,
we accept that the patches interact in a way as to dilute
their effects but not in a manner that precludes their joint
application. When interactions exhibit synergy or weak
antagonism, both patches should be applied because the
reduction in energy from their joint application exceeds
either applied alone; if the patches exhibit strong antago-
nism, the most effective patch should be chosen and the
other discarded.

4 RESEARCH QUESTIONS

Any attempt to improve energy consumption, search-based
or otherwise, relies on the ability to reliably measure energy.
Our first question therefore investigates the degree to which
our energy measurements are sufficiently reliable to assess
energy improvement:

RQ1, Measurement.What variance occurs when measuring
energy consumption?

As with all forms of real-world measurement, energy
measurements are vulnerable to a number of different sour-
ces of variation. With this in mind, we wish to establish the
degree of variance to expect, both for a single energy mea-
surement device and across multiple devices. Even on a sin-
gle device, the amount of energy consumed may vary
when, on different occasions, exactly the same software sys-
tem is executed with exactly the same test suite; we wish to
understand the magnitude of this variance. If the variance
is high, then we have no foundation upon which to make
reliable measurements. We argue that any experimental
work on energy assessment or improvement should, as a
preliminary step, report results for such variance, in order
to exclude a serious potential threat to validity of the scien-
tific findings. This motivates our first research question:

RQ1a: What is the variance when measuring using a single
energy measurement device?

To answer this question, we choose a node within our
cluster as a test target. Then for each application, we uni-
formly select a testcase and execute the application 30 times
on the target node, recording the energy consumed during

each iteration. We use this data to measure within device
variance. This variance informs us of the statistical error in
the measurements we obtain.

Even if the variance is small when executing within a
device, there may be variance between different devices.
Several previous studies of energy assessment and
improvement have reported results based on only a single
device [7], [41], [44]. This leaves open another potential
threat to the validity of the findings, which would occur if
different instances of the same device type give highly dif-
ferent readings for the same software system and test suite.
While RQ1a informs us of the statistical error, we may miss
detecting a form of systematic error where different devices
give different measurements for the same process. This moti-
vates RQ1b:

RQ1b: What is the variance in direct energy measurements
across multiple devices?

To answer RQ1b, we uniformly select an application and
a corresponding testcase. We then run that application and
testcase pair on all the devices in the cluster, 100 times, mea-
suring the energy consumption each time. We use box-plots
(one box-plot per device) to determine if there is variance in
energy measurements across the devices.

Our goal in answering RQ1b is to find whether there is
systematic error across different devices. This error can be
tolerated if it is consistent as we are only interested in the
proportional differences in energy consumption when assess-
ing energy improvement, not the absolute measure of energy
consumed. This motivates RQ1c:

RQ1c: What is the variance in proportional energy changes
across multiple devices?

To answer RQ1c, we uniformly select an application and
all of its testcases.We then run the application andwith all of
its testcases on every device in the cluster. For each device,
starting with the testcase which consumed the smallest
amount of energy, we record the proportional increase in
energy consumption between it and the next smallest test-
case. We then create a box-plot for each of these proportional
increases across all devices to show whether these propor-
tional figures are reliable across our cluster. Once we have
determined the suitability of our energy measurement clus-
ter, we may begin evaluating our applications and the var-
iants produced by applyingmodifications to them.

When assessing whether an improved program is accept-
able or not, we need a test oracle that determines whether
the behaviour of the improved program is acceptable with
respect to the behaviour of the original. In software testing,
more generally, this is an instance of the oracle problem
which, though significant, is largely unsolved [8]. However,
one of the advantages of genetic improvement is that the
original version of the program can act as the test oracle,
against which improved versions are compared [24], [60].
For a given candidate program variant, we compare the

Fig. 5. The interaction spectrum (Definition 3) used in this investigation when studying the effects of two energy-saving software modifications in
respect to the energy consumed by the original software.

1156 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

behaviour of the original program with that of the candi-
dates to check whether it has deviated from the behaviour
of the original, and therefore should be discarded. This
raises the fundamental question of how much deviation
from the behaviour of the original can be tolerated.

For some application scenarios, no deviation can be toler-
ated, but, in many other scenarios, exact replication of the
behaviour of the original is unnecessary. Previous work on
genetic improvement has shown that genetically modified
programs may improve not only targeted non-functional
properties of interest, but also the functionality of the origi-
nal program [34]. In such situations, the original program’s
behaviour only acts as a guide to the desired behaviour of
the genetically improved program.

Furthermore, even when preservation (or improvement)
of functional properties is not possible, the genetically mod-
ified program may need only approximate the behaviour of
the original, sacrificing some degree of output quality for
improvements in non-functional characteristics. For exam-
ple, programming graphics shaders inherently involves a
precision-speed trade off that genetic improvement techni-
ques can exploit to produce renders of lower quality in a
more limited time budget [57]. Often minor quality degra-
dation is imperceptible or acceptable to the end user, mak-
ing such trade-offs highly desirable. Much of the work on
energy improvement falls into this category [28], [42], [47].

This motivates RQ2, which investigates using an approx-
imate test oracle that allows us to trade solution quality
against energy improvement:

RQ2, Improvement. What additional energy improvement
can be achieved when using approximate test oracles in
place of exact test oracles?

In answering RQ2, we investigate the degree to which
energy efficiency can be improved by sacrificing solution
quality, guided by a domain-specific approximate test
oracle in each case. We also investigate the effect of
approximate test oracles on the frequency and impact
with which the different genetic operators affect energy
consumed and the trade-off between energy consumption
and solution quality.

Finally, we consider the way in which different genetic
improvementmodifications to the original program combine
to improve energy efficiency. The motivation for this
research question derives from the way in which search-
techniques typically combine lower-level building blocks of
partially fit solutions in order to arrive at fitter combined sol-
utions [19], [25], [46]. In RQ3, we therefore study the interac-
tions of combinations of individual modifications, reporting
the frequency of different kinds of synergistic effects:

RQ3, Synergy. How frequently do synergistic and antag-
onistic effects occur when combining known effec-
tive modifications?

To answer RQ3, we perform a pairwise investigation of
the modifications found to reduce energy. We take 15 per-
cent of all possible pairings from the set of effective modifi-
cations found in answering RQ2 (those found when using
the approximate test oracle). We evaluate each and report
the frequency of synergy and antagonism observed in accor-
dance to the interaction spectrum outlined in Section 3.4.

5 TEST SUBJECTS AND THEIR ORACLES

In order to answer these Research Questions, we chose four
test subjects using the following selection criteria.

5.1 Selection Criteria

The tool used to generate the Langdon format required all
software to be C/C++ with license permitting its use for
experimental purposes. As evaluation takes places on a
Raspberry Pi device running the Raspbian OS, the software
had to be compilable within this environment.

Due to inevitable overheads associated with sending
energy measurement start and stop commands over a net-
work [36], [37], we chose applications that have a non-trivial
execution time, which we have defined to be greater than 5
seconds. The larger the execution time, the smaller the over-
heads are as a percentage of total energy consumption.

We limited the selection further to applications that can
be run via command line, have testcases (or applications in
which they can easily be generated), provide a deterministic
output for any given input and, once execution has started,
do not require further user interaction. We imposed these
requirements to aid in the automation of experiments.

In choosing applications, we consulted relevant literature
on energy optimisation and found the PARSEC benchmark
suite has been utilised frequently [28], [55]. We therefore
decided that applications from these suites should make up
part of our selection. To avoid selecting from a single
source, we limited selection from the PARSEC benchmark
suite to two applications then searched open-source reposi-
tories, such as GitHub and SourceForge, for the remainder.
In addition to the criteria outlined above, we diversified the
application domains in our corpus, searching until we
found applications in each of the following application
domains: file compression, video processing, database proc-
essing and image processing.

We selected from these domains as they are both impor-
tant and popular, thus mitigating any concerns that our
findings are not representative of real-world software. Fur-
thermore, we believed these domains were likely to satisfy
our aforementioned requirements, particularly in that they
are all domains known to have non-trivial execution times
for inputs that can be easily obtained or generated.

Table 1 shows the applications’ domain, their lines of
code (LOC), the number of lines declared as modifiable in
the Langdon format, and the number of modifications we
generate and study. In the following sections, we summa-
rise each application, focusing on the technical or imple-
mentation details relevant to our investigation.

5.2 7zip

7zip Version 9.38.1 (Unix/Linux port) [1] is an open source
file archiver with its own 7z archive format. It consists of
136,828 lines of C/C++ code spread over 400 files. For the
experiments outlined in this paper, we concerned ourselves
only with the core Lzma compression and decompression
algorithms for optimisation. Excluding files associated with
user I/O behaviour, we identified 6 files (7zCrcOpt.c,
LzFind.c, Lzma2Dec.c, Lzma2Enc.c, LzmaDec.c and
LzmaEnc.c) that accounted for over 99 percent of execu-
tion time when compressing and decompressing a 50 MB

BRUCE ETAL.: APPROXIMATE ORACLES AND SYNERGY IN SOFTWARE ENERGYSEARCH SPACES 1157

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

text file. We chose to optimise these files exclusively due to
their dominant role in the application. These files contain
6,258 lines of C code, 2,524 of which are modifiable in the
Langdon format. For our experiments we generate a modifi-
cation set consisting of 5,000 modifications.

7zip is evaluated by measuring the total energy required
to compress and then decompress a testcase. For a testcase
to pass, the testcase must be compressed and then decom-
pressed to its original state. The approximation value is cal-
culated using the compression ratio. Equation (1) shows
how this approximation value is calculated. The original
program P compresses a testcase, t, with the size of the
compressed testcase recorded (we overload j � j to denote
file size). We do the same with the modified program P 0.
The approximation is the size of the compressed file pro-
duced by the modified program divided by the compressed
file produced by the original. This ratio has one subtracted
so that a value of zero is returned when there is no change
in compression rates. A higher approximation value indi-
cates worse compression while a lower approximation
value indicates better compression in the modified software.

We use 40 testcases to evaluate 7zip: 10 audio files, 10
text files, 10 image files, and 10 large files. The latter
includes files and directories which range from 22.2 MB to
64.4 MB while the other three categories contain files with
sizes ranging from 546 KB to 12 MB. These testcases cov-
ered 42 percent of all modifiable statements. We ran 7zip
using ./7za a test.7za {test} to compress and
./7za x test.7za -o ./output/ to decompress.

jP 0ðtÞj
jP ðtÞj � 1: (1)

5.3 Ferret

Ferret is an image search engine. The program takes an
image database and an image query as inputs. It then
searches the databases for images similar to the input image
and returns the top candidates ranked by relevance (the
number dependent on configuration). Ferret is part of Prince-
ton’s PARSEC Benchmark Suite [10] and has previously been
used as a candidate for genetic improvement at the machine-
code level by Schutle et al. [55]. We are using the most up-to-
date version of Ferret at the time of writing; that contained
within Parsec 3.0. Ferret is made up of 52 C/C++ files
(excluding libraries) which contain 13,260 lines of code.
When the Langdon format is used, 5,032 lines of code are
deemed as modifiable. Due to Ferret’s relatively small size,
we have chosen to optimise the entire application. We gener-
ate amodification set consisting of 11,000modifications.

We use the ‘simlarge’, ‘simmedium’, and ‘simsmall’ test-
cases provided as part of the PARSEC Benchmark Suite.

‘simlarge’ runs 256 image queries on a database of 34,973;
‘simmedium’ runs 64 images queries on a database of
13,787 images; and ‘simsmall’ runs 16 image queries on a
database of 3,544 images. Without alteration, these return
the top 10 from the ranking. In our work, we increase this so
that the top 50 are returned to achieve greater granularity in
the approximation value. For a testcase to pass, a non-null
ranking must be returned by the application. We found our
testcases covered 41 percent of all modifiable statements.

The calculation of the approximation value is shown in
Equations (3) and (4). The output rankings produced by the
original software P is compared against that produced by
the modified software P 0.

For each query (q 2 Q), the ranks are compared using
Kendall’s t ranking statistic. For equal rankings, Kendall’s t
returns one and tends to negative one for more unequal
rankings produced. Our approximation value rules require
zero to be returned when no approximation has taken place
and tend higher for more approximate solutions. Equa-
tion (3) manipulates the Kendall’s t statistic to conform to
this by incorporating a stretch factor s which we set to
5,000. This results inK, our modified ranking statistic, rang-
ing from 0 for equal rankings to 10,000 for completely
unequal rankings. The interval arithmetic [26] for K is
shown in Equation (2). The approximation value is the aver-
aged over all queries. If an image was ranked in the top 50
for the original output but not the modified output then it is
added to the end of the modified ranking. We run Ferret
using ./parsecmgmt -a run -p ferret -i {test}.

tðL1; L2Þ ¼ ½�1; 1� #Range of t

½0; 2� ¼ ½�1; 1� þ ½1; 1� #Shift interval

½0; 2s� ¼ ½0; 2� � ½s; s� #Stretch by s 2 Rþ
(2)

2s� sðtðL1; L2Þ þ 1Þ
¼ ½2s� 2s� � ½0; 2s� #Complement by 2s

K ¼ 2s� sðtðL1; L2Þ þ 1Þ (3)

1

jQj
XQ

q

KðP ðqÞ; P 0ðqÞÞ (4)

5.4 Bodytrack

Bodytrack is a computer vision application that tracks a
human body through an image sequence. The application is
capable, without markers or human involvement, to recog-
nise body position from an array of cameras over a series of
frames. It then adds boxes to these frames to mark the body
to produce a human-readable output. It is part of Prince-
ton’s PARSEC Benchmark Suite [10], version 3.0. Excluding

TABLE 1
Number of Modifications Investigated for Each Application Studied

App Domain LOC Modifiable LOC No. of Modifications

7zip Compression/decompression 136,828 2,524 5,000
Ferret Image Search-Engine 13,260 5,032 11,000
Bodytrack Body tracking 3,020 1,030 2,000
OMXPlayer Media Player 14,164 5,184 10,000

Total 28,000

1158 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

libraries, Bodytrack consists of 23 C++ files that, in total,
contain 3,020 lines of code. When the Langdon format is
applied 1,030 lines of code are modifiable. A modification
set of 2,000 was created to investigate Bodytrack.

Bodytrack comes with three test sets: ‘simsmall’,
‘simmedium’, and ‘simlarge’. The ‘simsmall’ test set con-
sists of 4 cameras, each of which take 1 frame of footage.
‘simmedium’ has 4 cameras and takes in 2 frames of foot-
age. ‘simlarge’ has 4 cameras and takes in 4 frames of foot-
age. The output for each is a series of points which can be
plotted on the input frames to highlight the location of a
body within it. For a testcase to be passed, Bodytrack must
return the same number of points (of non-null value) as the
original, unmodified application. These testcases covered 66
percent of all modifiable statements.

Algorithm 3 calculates Bodytrack’s approximation. It
averages the differences between the points produced by
the original software, lP , and the points produced by the
modified software l0P (both contain 1 . . .N points) for any
given input. The difference between two points is the sum
of the difference in the x component plus the difference in
the y component. An approximation value of zero means
the output is identical to the original and gets higher as the
results become more approximate. We run Bodytrack using
./parsecmgmt -a run -p bodytrack -i {test}.

Algorithm 3. Bodytrack’s Approximation Calculation

1: lP P ðtÞ
2: l0P P 0ðtÞ
3: assert ðlP : size ðÞ ¼¼ l0P : size ðÞÞ
4: N lP : size ðÞ
5: while lP 6¼ fg do
6: ðx; yÞ ¼ lP : dequeue ðÞ
7: ðx0; y0Þ ¼ l0P : dequeue ðÞ
8: s sþ jx� x0j þ jy� y0j
9: end while
10: return s

N

5.5 OMXPlayer

OMXPlayer [3] is a Video Player operated via command-
line interface. It takes in a video file and outputs the neces-
sary data to the HDMI port. Of particular interest for this
investigation is that OMXPlayer has been specifically
designed with the Raspberry Pi hardware in mind, taking
advantage of the Raspberry Pi’s GPU. It thereby differs
from the other candidates that exclusively interact with the
traditional computer architecture.

OMXPlayer consists of 14,164 lines of code spread over
24 C++ files. This excludes the FFmpeg package which,
though included in the source code and necessary for execu-
tion, functions as a third-party library to the application.
The number of lines tagged as modifiable using the Lang-
don format is 5,184 and a modification set of 10,000 modifi-
cations was generated.

The tests for OMXPlayer consist of MP4 video clips gath-
ered from https://archive.org. The videos’ average length
is 14.7 seconds with a minimum of 13.0 seconds and maxi-
mum of 15.0 seconds. These testcases covered 38 percent of
all modifiable statements. In order to evaluate modified ver-
sions of OMXPlayer, the application is modified to copy the

data that would be sent through the HDMI interface to a
text file; one HDMI packet per line. As this writing to file
may have some impact on energy consumption, all OMX-
Player variances are run twice. Once with the HDMI-to-text-
file functionality and again without. The latter is when the
energy measurement is taken; the former is used to evaluate
the approximation value. For a testcase to pass a non-null
output must be written to the text file.

Equation (5) shows how the approximation value is cal-
culated. As can be seen, the approximation value for any
given test is calculated by taking the number of lines
returned by a POSIX diff on the output generated by the
original software, LP , in comparison with the output of the
modified software, L0P , for a given testcase. This is then
divided by the total number of lines the original output.
Therefore, zero is returned when the outputs are identical
and tends higher the more approximate the output
becomes. We use this as a proxy for video quality. The more
HDMI packets that differ from the original, the more lines
will be returned by POSIX diff and the higher the approxi-
mation value will be. We run OMXPlayer using ./omx-

player -p -o hdmi {test}.

jdiffðLP ; L
0
P Þj

jLP j : (5)

6 RESULTS

We measure energy consumption for both the original
and all the 28,000 software variants (see Table 1) of the
four test subjects presented in Section 5, using the meth-
odology outlined in Section 3. Having thereby identified
a set of effective (i.e., energy reducing) modifications, we
uniformly sample 15 percent of all possible pairwise com-
binations. We apply these, in turn, to the four applica-
tions under test and measure the energy consumption to
check for synergistic or antagonistic effects. We summa-
rise our results and answer the research questions posed
in Section 4 as follows.

6.1 RQ1: Measurement

The first research question is concerned with the reliability
of energy measurements within our Raspberry Pi cluster. In
particular, we ask: what variance occurs when measuring
energy consumption?

RQ1a asks “What is the variance when measuring using a
single energy measurement device?”. To answer this, we plot
the variance in energy measurement, within a single device,
across all applications studied. This results in the box-plots
found in Fig. 6. The mean for 7zip is 48.45J with a standard
deviation of 0.31, for Bodytrack, 100.19J with a standard
deviation of 1.17, for Ferret, 363.25J with a standard devia-
tion of 1.26, and for OMXPlayer, 57.17J with a standard
deviation of 0.18. We therefore conclude that the precision
of the energy measurement setup is sufficiently high for the
needs of our investigation.

RQ1b asks “What is the variance in direct energy measure-
ments across multiple devices?”. To answer this we measure
the energy consumption of each node running 7zip (chosen
uniformly at random from the four applications studied) on
a single, uniformly chosen testcase (in this case, ‘The Com-
pleteWorks ofWilliam Shakespeare’, a 5.6 MB file). The box-

BRUCE ETAL.: APPROXIMATE ORACLES AND SYNERGY IN SOFTWARE ENERGYSEARCH SPACES 1159

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

https://archive.org

plots in Fig. 7 show the distribution of energy readings for
each Raspberry Pi device. As can be seen, the measure-
ments vary noticeably between devices but are consistent
within each device. In answering this research question,
we also observed that restarting a node in the cluster can
result in different readings compared to those given
before its restart. This did not interfere with our experi-
ments as readings between restarts were consistent. A
survey of the relevant literature unearthed an analysis by
Kalibera et al. [29] which describes this phenomenon as a
little known but none-the-less near-universal problem
when taking measurements of modern computer systems.
The significant differences that can occur when rebooting
is primarily due to non-deterministic properties in mod-
ern operating systems, particularly that of memory

management which can have a knock-on effect on cache
hit-rates. In line with our findings, Kalibera et al. note
that measurements are consistent between restarts.

Therefore, we conclude that this approach to measuring
energy consumption produced results that lack accuracy but
have good precision [58]. As Fig. 7 shows, it is impossible for
each reading to be accurate, but within each device, the
readings are precise. This inaccuracy, however, is only rele-
vant if we want to obtain energy reductions or increases in
Joules which, in this investigation, we do not. In our investi-
gations, we wish to obtain the proportional change between
software variants and, therefore, it is important to show
that the proportional change observed in one device is con-
sistent across all devices.

It is for this reason RQ1c asks “What is the variance in pro-
portional energy changes across multiple devices?”. To answer
this, we ran Bodytrack (uniformly chosen from all applica-
tions studied) with each of its three testcases (‘simsmall’,
‘simmedium’, ‘simlarge’) on all devices in the cluster and
recorded the proportional increases in energy consumption
between simsmall and simmedium, and simmedium and
simlarge for each device within the cluster.

The box-plots in Fig. 8 show these proportion increases
between the three Bodytrack testcases. The difference bet-
ween the simsmall and simmedium averages 56.64 percent
with a standard deviation of 1.03, and the difference between
simmedium and simlarge averages to 38.46 percent with a
standard deviation of 1.01. Given this small standard devia-
tion,we believe that proportional change in energy consump-
tion between two measurements within the same device is
consistent across all devices.

6.2 RQ2: Improvement

We are concerned with the trade-off between energy con-
sumption and solution quality produced by modified soft-
ware, which we obtain using the delete, copy and replace
search operators. Therefore, we ask: what additional energy
improvement can be achieved when using approximate test oracles
in place of exact test oracles?

Fig. 6. The variance in measurements that occurred when running each
application (unmodified) 30 times on the same device on a uniformly
chosen testcase.

Fig. 7. The variance in measuring the same program with the same input
across different devices.

Fig. 8. The variance in proportional energy change across different devi-
ces for Bodytrack’s simsmall, simmedium, and simlarge testcases.

1160 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

In order to obtain a baseline measurement, we first inves-
tigate the question: what is the frequency and impact of energy-
efficient modifications in the local neighbourhood when using
exact test oracles? To answer this, we extract the data gener-
ated from the experimental procedure outlined in Section 3.
We only consider a modification to be successful when it,
on average, reduces energy consumption across 30 runs
with this effect observed to be statistically significant
(p < 0:05 according to the Mann-Whitney U test) for each
testcase. As we use exact test oracles in answering this
research question, we exclude any modifications that have
an approximation value not equal to zero.

Table 2 shows the results obtained to determine the fre-
quency and magnitude of effective modifications in the
local search space (i.e., defined by the delete, copy and
replace operators), assessed using the exact test oracles.
The most striking finding is the frequency of modifica-
tions that reduce energy consumption (i.e., ‘+ve mods’);
averaging only 0.09 percent across all cases. The impact
of these is an average decrease of 1.25 percent across all
applications with a maximum of 2.69 percent. This is a
striking finding as it indicates only small improvements
can be found in the one-step local neighbourhood when
using an exact test oracle.

Table 3 reports results obtained when approximate out-
puts are permitted. We analyse the same dataset but allow
modifications with a non-zero approximation value. As dis-
cussed in Section 5, a higher approximation value for 7zip
means less compression; for Ferret, a greater inaccuracy in
the search engine result rankings (using the original ranking
as the baseline); for Bodytrack, a larger error in the plotting
of the body’s location within a series of images; and for
OMXPlayer, a greater proportion of incorrect, or misplaced,
HDMI packets. As our approximate oracles permit a signifi-
cant degradation in output quality, it should be noted that

the solutions which make up the averages in Table 3 may
not be applicable in many real-world environments. As an
example, a valid approximation for 7zip could be an alter-
ation which results in it producing compressed files of equal
or greater size than what was input. Evidently such a result
would not be of use in any conceivable domain. What we
wish to demonstrate here is that approximation is an ave-
nue for more optimisations; that the more a GI practitioner
permits approximation, the more energy saving solutions
can be found.

We found that approximation increased the frequency
of effective modifications in the local search space to 1.36
percent; a 15-fold increase compared to those found when
using the exact test oracle. This increase in frequency was
mirrored in the increase in impact the average modifica-
tion was capable of producing. While the average effec-
tive modification energy consumption reduction when
using the exact test oracles was 1.25 percent, an average
reduction of 33.90 percent was achieved when using
approximate test oracles.

As previouslymentioned, these statistics assume any level
of approximation is acceptable. Therefore, Table 4 provides
Pareto fronts for each of the applications investigated which
show the energy reduction versus output quality trade-off.
The approximation value in each case is calculated using the
formulæ presented in Section 5. For each, we describe what
each Pareto optimal solution produces when run. We also

TABLE 2
Each Application with the Number and Percentage of
Modifications That Reduced Energy Consumption

According to an Exact Test Oracle

Application +ve Mods %age Mods Max Average

7zip 0 0.00% N/A N/A
Ferret 0 0.00% N/A N/A
Bodytrack 6 0.30% 2.69% 1.54%
OMXPlayer 4 0.04% 2.32% 1.51%

Average 2.5 0.09% 1.25% 0.76%

The average and maximum magnitude of these modifications is also included.

TABLE 3
Each Application with the Number and Percentage of
Modifications That Reduced Energy Consumption

According to an Approximate Test Oracle

Application +ve Mods %age Mods Max Average

7zip 8 0.16% 48.24% 13.16%
Ferret 157 1.43% 79.88% 51.13%
Bodytrack 72 3.60% 33.69% 8.17%
OMXPlayer 24 0.24% 95.60% 63.15%

Average 65.25 1.36% 64.35% 33.90%

The average and maximum magnitude of these modifications is also included.

TABLE 4
Pareto Fronts for the Four Subjects Investigated Showing Trade-

Off Between Energy Consumption and Solution Quality

(a) 7Zip

Energy Reduction Approximation Value

5.08% 3:93� 10�4
12.29% 0.072
13.17% 0.102
48.30% 0.741

(b) Ferret

Energy Reduction Approximation Value

43.19% 0.154
60.79% 39.873
75.53% 78.800
75.55% 1550.200
76.21% 2669.710
79.88% 6221.220

(c) Bodytrack

Energy Reduction Approximation Value

2.69% 0.000
19.26% 0.131
27.97% 0.170
29.13% 0.192
33.69% 0.452

(d) OMXPlayer

Energy Reduction Approximation Value

2.32% 0.000
78.45% 0.003
92.70% 0.637
95.53% 1.002
95.60% 1.043

BRUCE ETAL.: APPROXIMATE ORACLES AND SYNERGY IN SOFTWARE ENERGYSEARCH SPACES 1161

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

sample a single approximate solution for each application
and attempt to explain why the modification reduced energy
consumption and reduced the output quality.

In the case of 7zip, the Pareto front contains 4 solutions,
ranging from a 5.08 percent energy reduction with an
approximation value of 3:93� 10�4 to a 48.30 percent reduc-
tion with an approximation value 0.741. The latter translates
to the compressed file generated by the modified software
being, on average, 74 percent larger than if compressed using
the unmodified version of 7zip. This variant of 7zip is still
performing non-lossy compression but less effectively. We
analysed this solution in greater detail and found the modifi-
cation deleted a line in LzmaEnc.c, which initialised the a
variable declaring dictionary size (an unsigned 32 bit inte-
ger) to zero. There is then a method that follows which sets
the dictionary size variable to 8MB if the dictionary size vari-
able was initialised to zero. Otherwise, the dictionary size
variable is kept at its specified non-zero value. As uninitial-
ised integers produce undefined behaviour in C, the value of
the dictionary size varies between runs though, from our
observations, this was always significantly below the 8MB
figure. The highest we observed was 4 KB. A lower dictio-
nary size inevitably leads to less compression, a shorter exe-
cution and, therefore, less energy consumed overall.

For Ferret, there are 6 Pareto optimal solutions. This
ranges from a 43.19 percent reduction in energy, for an
approximation value of 0.154, to a 79.88 percent reduction
in energy, for an approximation value of 6221.220. In the
former case, the approximation value translates to a
Kendall’s t of 0.73. The next solution on the Pareto front
achieves a 60.79 percent energy reduction with an approxi-
mation value of 39.873. This approximation value translates
to a Kendall’s t of -0.95, a value close to the Kendall’s t

‘worst case’ of -1. Therefore, five of Ferret’s six Pareto opti-
mal solutions produce solutions close to random (i.e., with
very high inaccuracy). We sampled the solution with a
43.19 percent energy reduction and an approximation value

of 0.154. This modification applied the delete operator to the
condition of a FOR loop within emd.c (i.e., turned it to
false). This turned off an energy intensive branch within
Ferret’s EMD (Earth Mover’s Distance) algorithm. The EMD
algorithm computes the distances of colour histograms,
which Ferret uses as a metric to show how similar two
images are. With this modification, Fthis distance is more
approximate and therefore leads to a different ranking of
images output for a given input.

Bodytrack has 5 Pareto optimal solutions. These range
from a 2.69 percent reduction where there is no approxima-
tion to a reduction of 33.69 percent with an approximation
value of 0.452. Fig. 9 shows the most energy-efficient sol-
ution’s output compared to that produced by the original,
unmodified software. We sampled the instance with a 33.69
percent energy reduction and a 0.452 approximation value.
Bodytrack functions by iteratively generating models (con-
figurations of the wire-frame body, like that shown in
Fig. 9), assigning them weights proportional to their like-
ness of the body within the image. A subset of models are
selected proportional to these weights and these models are
‘mutated’ by incrementing their parameters by random
amounts as determined by the Gaussian distribution. This
process is repeated until the maximum number of iterations
is met or until the search converges on a model that has a
sufficient likeness to the body within the image. Bodytrack
determines the likeness of a model to the input image via an
error function. The modification responsible for the 33.69
percent reduction in energy consumption deletes a line in
Bodytrack’s ImageMeasurements.cpp file which inter-
feres with how this error is calculated, effectively lowering
it. This allows Bodytrack to converge on a more approxi-
mate model earlier, reducing execution time and, by exten-
sion, energy consumption.

Finally, the OMXPlayer Pareto front contains 5 Pareto
optimal solutions. We visually inspected the video output
when these modifications were applied. We found the three
most approximate solutions did not produce video output
which was viewable (a black screen with no audio). The
next most approximate solution achieved a 78.45 percent
reduction with an approximation value of 0.003. This
approximation value means, on average, 0.15 percent
HDMI packets differed from the output of the original
application. We found that this solution was viewable but
played video files at increased speed and with distorted
audio. The solution with no approximation and a 2.32 per-
cent reduction in energy consumption, when visually
inspected, was identical to the original as expected. We
sampled the variant which achieved a 78.45 percent reduc-
tion in energy consumption with an approximation value of
0.003. We found that this was due to a replace operation in
OMXPlayer’s OMXPlayerAudio class; modifying an IF

statement’s condition, turning its condition to true. This
resulted in declaring audio to be ‘passed through’. Pass-
through is an option available in media players to turn off
audio decoding and, instead, output the encoded audio
stream unprocessed. This is desirable when the user wishes
to offload decoding to more advanced hardware, such as
home stereo setups. This explains why audio was so dis-
torted in our inspection of this modification. It also partway
explains the energy reduction as this modification removes

Fig. 9. The output from two versions of the Bodytrack application. The
image on the left is generated from the original application and the image
on the right is generated from a modified variant. The ‘body tracking’ on
the right is approximated but takes 33.69 percent less energy to compute.

1162 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

costly audio decoding. We also found the speed of the video
increases due to this modification. The reason for this is less
clear but appears to be due to how OMXPlayer processes
video along side audio. Each are allocated their own thread
and, to ensure these threads remain in-sync, the video is
sped up or sped down to keep pace with the audio. Nor-
mally, these corrections would be unnoticeable to the user,
speeding up or slowing down video stream by a small
amount for a small period of time. As this modification
results in the audio being passed through instead of proc-
essed, the audio thread runs considerably faster and thus
the video speed is increased in a futile attempt to remain in-
sync. If the user specifies audio pass-through when running
the program via the command line interface, checks are
done to ensure the audio is passed-through to external
decoders. If these checks fail, the user’s decision is overrid-
den. This modification bypasses these checks. We believe
this increased video speed explains most of the energy
reduction as it simply results in the total execution time of
the video player decreasing.

Using the data gathered in this investigation, we were
able to determine how frequently each of the search opera-
tors occur in energy-saving modifications. Forest et al. [20]
and Le Goues et al. [38] evaluated the delete, copy, and replace
operators in the context of automated software repair. They
found that delete is the most effective at ‘fixing’ bugs (Qi
et al. have since shown that many of these ‘fixes’ reduced
symptoms rather than repaired bugs [54], however, this
form of pseudo-repair may be sufficient in some circum-
stances), followed by replace with copy being considerably
less successful. We find this trend largely holds when
applied to genetic improvement for energy consumption.
Table 5 shows the frequency of effective modifications, for
each application studied, broken down by operator type.
delete, followed closely by replace, are most likely to produce
an effective solution. Table 6 shows the average and median
energy reduction per operator type. This table shows that

when copy is effective (albeit rarely as shown in Table 5) it
can have the biggest impact, followed by delete, then replace.

In viewing these results, we were motivated to discover
how many of the replace operations were, in effect, delete
operations; replace operations in which the same effect could
be obtained via a single delete operation. We uniformly sam-
pled 20 percent of the effective replace modifications (those
that reduced energy consumption and passed the tests,
with approximation permitted) from each application and
manually inspected them.2 Our manual inspection process
involved two software engineering researchers who exam-
ined each replace operation independently and classified
them as either ‘delete-by-proxy’ when it was decided the
same effect was possible via the application of a single delete
operation, or as ‘genuine replace’ when this was not possi-
ble. We reserved classification ‘unknown’ if there was insuf-
ficient evidence from manual inspection of the source-code
to make a decision. Once both manual inspectors completed
their classifications, the inspectors met and compared their
classifications. Where there were conflicts in a mod-
ification’s classification, the inspectors discussed their rea-
soning for their respective classification with the goal of
coming to an agreement. In this case, the two inspectors
reached agreement on all modifications.

We record the findings of this study in Table 7. We found
half of all replace operations could have occurred through a
single deletion, though a substantial minority, 38 percent,
were legitimate replace operations that could not be recreated
through a single use of the delete operator. Referring back to
Table 5, which shows 52.9 percent of all effective modifica-
tions were delete and 42.9 percent were replace operations, we
can addmoreweight to the argument that delete ismost effec-
tive as half of all replace are effectively delete operations.

6.3 RQ3: Synergy and Antagonism

This research question asks How frequently do synergistic and
antagonistic effects occur when combining known effective modifi-
cations? We answered this question by uniformly selecting
15 percent of all available pairs of effective modifications
(approximation permitted), evaluating them, then classify-
ing them according to our interaction spectrum, as defined
in Section 3.4.

Table 8 shows the distribution of the interaction classifi-
cations. As can be seen, at 49.5 percent of all pairings, weak
antagonism is the most common classification. 12.0 percent
of all pairings were found to exhibit synergy though this

TABLE 5
Number of Effective Modifications Using the Delete, Copy
and Replace Search Operators Across All Applications

delete copy replace

7zip 5 0 3
Ferret 81 7 69
Bodytrack 44 1 27
OMXPlayer 8 3 13

Percentage 52.9% 4.2% 42.9%

TABLE 6
The Mean and Median (Bracketed) Impact of Effective Delete,

Copy, and ReplaceModifications, in Terms of Percent
of Energy Reduction, Across All Applications

delete copy replace

7zip 16.60% (12.29%) 0.00% (0.00%) 7.42% (5.08%)
Ferret 56.45% (73.64%) 64.74% (75.17%) 43.50% (37.23%)
Bodytrack 8.27% (4.70%) 0.16% (0.16%) 8.31% (7.09%)
OMXPlayer 57.01% (71.09%) 71.86% (78.40%) 64.92% (78.44%)

Average 34.58% (40.43%) 46.59% (38.43%) 31.04% (31.96%)

TABLE 7
A 20 Percent Sample of All Effective Replace Operations
Manually Classified as Either Effective Delete Operations,

Legitimate Replace Operations or Unknown Effect

Delete-by-proxy Genuine Replace Unknown

7zip 0 0 1
Ferret 7 4 1
Bodytrack 4 2 0
OMXPlayer 0 2 1

Total 13 (50%) 10 (38%) 3 (12%)

2. We sampled a minimum of one, for applications with less than 5
effective replacemodifications.

BRUCE ETAL.: APPROXIMATE ORACLES AND SYNERGY IN SOFTWARE ENERGYSEARCH SPACES 1163

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

figure is skewed by Bodytrack where 35.3 percent of all
pairings were classified as having a synergistic interaction.

In total, 38.5 percent of modification pairings produced
antagonistic behaviour. To obtain the most optimal solu-
tions, it is evident that effective modifications must be
selected carefully and therefore greedy approaches will
rarely produce superior solutions. Though 61.5 percent of
modification pairs are worth combining, the rate of antago-
nism is high. For this reason, we advocate the usage of evo-
lutionary search techniques such as GAs. They are capable
of building complex solutions by testing the interaction of
components. Bad interactions incur a fitness penalty thereby
disincentivising their combination in the population even
when individually they are of benefit.

We chose to investigate an instance of synergy and an
instance of antagonism to better understand the phenome-
non. 7zip has one instance of ‘synergy’ and was the first
found in this investigation. We therefore dedicated some
time to investigating the synergistic interaction.

The two modifications responsible for synergy in the
case of 7zip altered lines in two separate classes,
LzmaEnc.c (shown in Fig. 10) and LzFind.c (shown in
Fig. 11). We monitored the control flow of the LzmaEnc.c

class when running without any modification, modifica-
tion just in LzmaEnc.c, modification just in LzFind.c,
and, finally, when both classes were modified. We
observed that the control flow in LzmaEnc.c is the same
whether the LzFind.c modification is applied exclusively
or no modification is applied. When the LzmaEnc.c mod-
ification is solely applied it results in the skipping of a
large portion of a frequently iterated FOR-loop. This is
shown Fig. 10 where line 40 is deleted thereby leaving
numAvailFull uninitialised. In our analysis this resulted
in the IF condition at line 46 being true at a much higher
frequency than it would when numAvailFull was initial-
ised. When both modifications are present, the LzmaEnc.

c maintains this behaviour but, in addition, the likelihood
of returning at Line 35 also increases.

The modification in LzFind.c, in Fig. 11, achieves this
additional, synergistic behaviour. The modification, the
application of a delete operation at line 40, turns while (+

+len != lenLimit) to while (false) in the Hc_Get-

MatchesSpec method. We found this results in the value
returned by Hc_GetMatchesSpec having a higher likeli-
hood of being a lower value. This is passed, via Get-

Matches, to the ReadMatchDistance method in
LzmaEnc.c (Fig. 10). This value is then used to calculate a
variable, lenRes, the value of which ReadMatchDis-

tance eventually returns and assigns to lenEnd in
getOptimum at line 26. Though other factors feed into this

calculation, a lower value returned by GetMatches results
in a lower value returned by ReadMatchDistances. Ulti-
mately, the smaller the value of lenEnd the quicker the
return statement is encountered at line 35.

We find this reduces the execution frequency of the more
expensive false branch of the IF statement, at line 34, by
15.7 percent. Individually, the LzmaEnc.c modification
achieves a 24.7 percent reduction in energy consumption.
Likewise, in the case of the LzFind.c modification a 17.5
percent reduction in energy reduction is found. When both
are combined a 43.4 percent reduction is achieved. The syn-
ergistic effect results in an ‘additional’ saving of 1.2 percent.

In a similar vein, we investigated an antagonistic reac-
tion. In Bodytrack, we found two modifications that both
deleted parameter declarations in Bodytrack’s CameraMo-

del.c class. One deleted mc_ext(1,1) = Rc_ext[0,1]

TABLE 8
The Percentage of Effective Modification Pairings within the

Interaction Spectrum (Definition 3)

App synergy weak antagonism antagonism

7zip 0.9% 60.4% 38.7%
Ferret 9.2% 48.8% 42.0%
Bodytrack 35.3% 40.1% 24.6%
OMXPlayer 2.6% 48.7% 48.7%

Average 12.0% 49.5% 38.5%

Fig. 10. Synergy Modification (LzmaEnc.c).

1164 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

and another deleted mc_ext(1,2) = Rc_ext[1,2].
Known as the 3D Displacement Matrix, mc_ext is utilised
frequently in Bodytrack. In both cases, when these matrix
values are left undefined, energy consumption reduces.
When applied together, a smaller energy consumption is
measured than when either is applied individually. We can-
not fully explain this effect as both modifications work by
leaving these matrix values as uninitialised; undefined
behaviour in C. However, the effect on energy consumption
differs depending on whether either or both values are
uninitialised. We found that application of the first delete
operation alone results in a 17.6 percent reduction in energy
consumption. The second delete operation, when applied
alone, reduces energy consumption by 13.8 percent. How-
ever, when applied simultaneously, we found energy
reduces by only 11.6 percent, lower than when either are
applied individually.

7 DISCUSSION

In RQ1, we showed that the measurement framework we
used in this investigation is sufficient to understand the
energy optimisation search space inGI.However,we showed
that our energy measurement framework did not produce
reliable results between devices. We also observed that, in
line with observations from other researchers [29], node
restarts can affect energy readings. Despite this, we have
shown the proportional difference in energy readings between
devices are consistent, and believe it is important that those
working in energy optimisation research are aware of these
issues. The seemingly simple task of being able to measure
what is being optimised remains a significant hurdle in
energy optimisation research [11] and, thus, care and consid-
eration is needed when planning experiments. The Rasp-
berry Pi/MAGEEC board setup is an abstract representation
of ‘real-world’ systems, which researchers can use to gain
insight into energy consumption in a manner which is con-
trolled, low cost, and easily expandable. We acknowledge
that more accurate results may be obtained with more expen-
sive devices, though this would come at the cost of having
fewer devices running in parallel, limiting the amount of
data that may be gathered in a given timescale. We believe
the setupwe use can be used in a variety of other energy opti-
misation activities, such as training models which could be
translated, via transfer learning techniques [50], to optimise
more advanced software systems.

With this energy measurement setup, we analysed what
was possible with the application of a single modification
in RQ2. We conclude from this data that the delete, copy, and
replace operators are largely ineffective at optimising energy
consumption with only 0.09 percent capable of producing a
statistically significant reduction in energy consumption
while preserving output quality in GI. Evaluations of
code modifications are typically costly, as checks must be
done to ensure functionality has been preserved. On top of
this, testing must determine the modifications’ effect on the
target property (in our case, energy consumption). We have
shown that less than one in every thousand modifications is
effective. Though evaluations of ineffective modifications is
expected in GI, this rate is extremely high. Some practi-
tioners of GI who target energy optimisation have had
success with more bespoke operators, such as swapping
of Java Collection implementations [44], or alteration of
colours in GUI interfaces to reduce the energy consumption
of OLED Smartphone screens [42]. We argue this is a good
avenue for research as our findings suggests the ‘standard
set’ of operators discussed in this paper are not very
effective.

We have shown that permitting a degradation in output
quality can aid in the optimisation of energy efficiency. We
observe that the number of modifications that can reduce
energy consumption increase from 0.09 to 1.36 percent
when approximation is permitted; a 15-fold improvement
in the number of effective modifications. We appreciate that
a lot of these approximate solutions are undesirable and
that, in most cases, there are limits on how approximate an
output can be. However, we have found no evidence that
permitting approximation has any negative effect on reduc-
ing energy consumption. Many multi-objective optimisation

Fig. 11. Synergy modification (LzFind.c).

BRUCE ETAL.: APPROXIMATE ORACLES AND SYNERGY IN SOFTWARE ENERGYSEARCH SPACES 1165

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

methods are available [45] and have already seen adoption
in genetic improvement research [13], [14], [42], [62]. We
believe integrating ‘output quality’ as an objective can sig-
nificantly benefit future projects.

In answering RQ3, we explored thewider search-space by
analysing the effectiveness of combining modifications. Our
analysis shows that both synergy and antagonism are pres-
ent in the search space. If there was low antagonism, we
could advocate a greedy approach as the combination of any
effective two modifications rarely produced a non-linear
negative effect. However, we did not observe this. In fact,
38.5 percent of modifications produced some form of antago-
nism. For this reason, we advise more advanced search tech-
niques such as genetic algorithms, though any search that
effectively tests combinations of modifications would be suf-
ficient. Simply combining any and all effective modifications
will not produce the sums of their parts in all cases.

In answering RQ1, we showed that, with careful analysis
and understanding, we can report reliable results. We could
have reduced variance more by running applications on a
bare machine, thereby removing interference that may
emerge from the operating system. This may produce
results of greater interest as running on a bare machine is
more common in embedded systems which, unlike the
Raspberry Pi devices studied, may be battery powered,
making the goal of reducing energy consumption more
important. The ‘Internet of Things’ is likely to constitute of
many small embedded systems powered by batteries that
are expected to run for a certain time before depletion. It
would therefore be useful to explore this area in future;
however, in this work, we focused on a more typical archi-
tecture — that with an application working on top of an
operating system. The primary motivation for this is that
there is considerably more open-source software available
for optimisation in such an environment.

Our measurement cluster can expand indefinitely, thus
allowing more modifications to be evaluated in parallel. We
have explored a very small area of each respective search-
space. In future work, it may be of value to explore the wider
search space (i.e., interaction betweenmanymodifications).

8 THREATS TO VALIDITY

The work presented here uses direct energy measurements.
Though this results in more reliable evaluations compared
to the ones based on simulation, these direct energy meas-
urements inevitably also contain variance. We have quanti-
fied this in answering RQ1 but it means that modifications
which produce very small but positive changes are unde-
tectable. While we detected energy decreases as small as
0.009 percent, there may be modifications that produce even
smaller changes that are simply undetectable with our
framework. Our investigations, however, show that modifi-
cations which produce detectable, non-trivial, energy reduc-
tions are rare.

In this investigation, we have been careful to ensure that
any modifications reported as being effective truly are. To
achieve this aim, our requirements for what constitutes an
‘effective modification’ have been strict. For a modification
to be classified as effective, it must produce a solution in
which we observe a statistically significant decrease for all

testcases. While we believe this to be the most honest
approach to presenting the data, it may not be representa-
tive of real-world genetic improvement where modifica-
tions can be seen as effective if they cause improvements in
only a proportion of testcases. Determining at what point
we may classify a modification as effective is subjective and
thereby left to the GI practitioner’s discretion. We have cho-
sen to be strict rather than risk being too lenient, thereby
avoiding publication of results that may not be applicable to
all those in the GI research community.

All the applications we have chosen to study have user-
level parameters which may be modified. Some of these
parameters may be used to further approximate output
quality while reducing energy consumption. We have not
experimented with traditional application parameter tuning
and have therefore not made comparisons between the
results presented here and what may be achievable through
other techniques. Such a study is outside of this inves-
tigation’s scope but we acknowledge there are other estab-
lished methods to trading application output quality for
reductions in energy consumption.

As we only target Raspberry Pi devices running the
Raspbian OS, we cannot ensure that the conclusions drawn
from this investigation are universal across all software sys-
tems. We acknowledge that results are likely to be different
when investigating hardware that utilises complex I/O
components such as wireless network interfaces which are
known to consume large amount of energy in mobile devi-
ces [40]. More research will be needed to investigate such
platform and system-specific variations.

We chose to investigate the copy, delete and replace search
operators because of their frequent use in state-of-the-art
genetic improvement work [34], [35], [53]. Other search
operators may function better in the context of energy con-
sumption; however, our aim was to investigate the nature
of the search space produced in modern GI research.

9 RELATED WORK

While improved hardware performance can ameliorate soft-
ware systems’ energy consumption, recent work on search-
based approaches to software improvement has demon-
strated that software engineers also have an important role
to play. White et al. [61] were among the first to automati-
cally search for modified versions of existing programs
to reduce energy consumption, trading functionality for
energy reduction. More recently, we have witnessed an
explosion of activity in this area.

In this investigation, we have focused on the delete, copy,
and replace operators. Though popular [34], [35], [53], there
are other methods to modify software to improve energy
efficiency. Schulte et al. [55] introduced the Genetic Optimi-
sation Algorithm (GOA) that was shown to reduce the
energy consumption of existing software systems by an
average of 20 percent. Their investigation modified software
systems at the machine code level. A a tool using a similar
algorithm was also used to fix bugs at this level [56]. There
is an argument that working at lower levels may produce
more fruitful results [49], but this introduces changes that
can be hard for humans to understand. This is part of the
reason most research in GI has focused on human-readable
source-code.

1166 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

Li et al. [42] demonstrated that by sacrificing some degree
of usability, energy savings of up to 40 percent could
be achieved for (battery-restricted) smartphones. Their
approach searched for contrast-preserving changes in screen
colours to reduce energy consumed by a smartphone dis-
play. In this case, the genetic improvement algorithm tog-
gled the colour settings of anAndroid application’s interface.

Manotas et al. [44] used a constrained exhaustive GIto
modify existing open source Java systems, reporting energy
improvements ranging between 2 and 17 percent. Their
approach used an operator that changed Java Collection
API implementations. The delete, copy, and replace operators
studied in this investigation work at a higher granularity
than Manotas et al.’s course-grained operator, yet Manotas
et al.’s approach has been shown capable of reducing
energy with considerably less effort. This idea of swapping
subclass implementations to find those that are most opti-
mal was later used by Burles et al. to reduce the energy con-
sumption of Google Guava’s ImmutableMultimap class
by 24 percent [16].

Hoffman et al. dynamically tuned parameters to limit
power spikes in server clusters [28]. They traded the quality
of their applications’ outputs in response to the power bud-
get; when power was plentiful, the applications would pro-
duce high quality solutions and when power was scarce,
the applications would produce lower quality solutions.
This work differs from ours in that they tuned parameters
directly exposed by software developers that were already
known to trade off execution time for output quality. It
would be possible to expose optimisations found in source-
code to a level in which they may be tuned as if they were
‘traditional’ parameters. This is part of a growing area
within genetic improvement known as ‘deep parameter
tuning’, which has been used to optimise the execution time
and memory consumption of C standard library’s malloc

function [62], optimise a face-detection algorithm’s execu-
tion time while permitting a degradation in its accuracy [13],
[14], reduce the energy consumption of Google Guava’s
CacheBuilder class [17].

In GI, it is increasingly common to optimise software for
specific hardware targets. Typically, this takes the form of
tuning parameters. CLBlast [48] is an example of a library
which incorporates an auto-tuning component to optimise
its OpenCL BLAS library to the target hardware. Due to this
tuning, CLBlast typically outperforms its direct competitor
clBLAS, up to a factor of two in some cases. Paone et al.
introduced a technique to auto-tune OpenCL kernels for tar-
get devices with up to 60 percent performance improve-
ments [51]. Their technique tackles the problem of a large
search space by identifying parameter constraints and then
developing a feasible subset of parameters. They find this
reduced the search space to 0.1 percent of its original size.

Not all changes have to occur in software; hardware itself
may be optimised. Zhang et al. [63] observed that up to 50
percent of an embedded system’s energy was consumed by
cache memory. They noted that a direct mapped cache is
more efficient per access than one that is is set-associative
but only if the cache hit-rate is high—something which is
dependent on the software being run. Similarly, there are
decisions to be made regarding the cache’s size. Smaller
caches are more energy efficient but exhibit poorer hit rates.

Zhang et al. resolved this problem by creating a special
cache that can have its size set and be toggled as either
directly mapped, two-way, or four-way set associative. In
evaluating this configurable cache they found it was capable
of reducing cache energy consumption of by 40 percent
when correctly tuned for specific work-loads.

While optimisationsmay bemade at the software or hard-
ware level, we cannot ignore the benefits of compiler optimi-
sations. GCC has approximately 100 flags exposed for tuning
and the optimal combination of these flags differ depending
on the target hardware. Typically, compiler optimisation
techniques take an iterative approach by setting some com-
piler flags, evaluating the quality of the compiled product/
products, then using this feedback to produce a better set of
flags [18], [21], [31]. This approach echoes the iterative
approach typical in GI research and, as in GI, this approach
is costly as the iterative process is required for every new
hardware. In 2011, Fursin et al. introduced ‘Milepost
GCC’ [22], which uses machine learning to build a model
that identifies GCC parameters for a hardware target. They
find that usingMilepost GCC can improve execution time by
up to a factor of two in some cases (11 percent on average),
without the need for costly iterative processing. Though typ-
ically targeting execution time, there has been work into tun-
ing parameters to reduce energy consumption [59].

10 CONCLUSIONS

We investigated software system’s energy optimisation
search space, focussing on three widely used modification
operators: copy, delete, and replace. We show that when using
exact test oracles, modifications to source code that produce
more energy-efficient solutions occur 0.09 percent of the
time on average; a flat search space that would be difficult
to traverse without a highly explorative search technique,
though when approximation of output is permitted this
figure grows to 1.25 percent, a 15-fold increase.

In terms of impact, when using the exact test oracle an
average decrease of 0.76 percent is observed but when using
the approximate test oracle the average impact increases to
33.90 percent. This finding points to the critical importance
of approximation for evolutionary energy optimisation. For-
tunately, many energy optimisation applications support
exactly this kind of optimisation as studied in the work
reported here.

We used direct energy measurements to obtain these
results and show that the energy measurement framework
used in this investigation was precise but lacked accuracy;
highlighting an important systemic error in energy meas-
urements. However, we found any proportional energy
measurements were reliable and, as such, advocate their
use when carrying out such research.

We produced findings which, in line with previous
research from non-energy-based optimisation problems,
demonstrate that the delete and replacemutation operators are
the most likely to be effective with copy modifications rarely
producing energy reductions. However, as finding effective
modifications was rare for any operator, we advise future
researchers to focus efforts into developing more specialised
genetic improvement operators for energy optimisation.

We also investigated the effects that energy-efficient
modifications produce when combined. We found that

BRUCE ETAL.: APPROXIMATE ORACLES AND SYNERGY IN SOFTWARE ENERGYSEARCH SPACES 1167

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

61.5 percent of pairingswereworthwhile. That is, the pairing’s
impactwas greater than that of itsmost effectivememberwith
12.0 percent exhibiting synergy. The remaining 38.5 percent of
modification pairs were antagonistic and thereby conclude
there is no guarantee that two goodmodifications will always
produce an energy-efficient software variant. It is evident that
more advanced search techniques are required.

ACKNOWLEDGMENTS

Dr. Justyna Petke is supported by an EPSRC fellowship:
EP/P023991/1.

REFERENCES

[1] 7zip, [Online]. Available: http://www.7-zip.org, Accessed on:
Jun. 28, 2017.

[2] MAGEEC Energy Measurement Board, [Online]. Available:
http://mageec.org/wiki/Power_Measurement_Board, Accessed
on: Jun. 28, 2017.

[3] Omxplayer. [Online]. Available: https://github.com/
popcornmix/omxplayer, Accessed on: Jun. 28, 2017.

[4] Raspberry Pi, [Online]. Available: https://www.raspberrypi.org,
Accessed on: Jun. 28, 2017.

[5] Raspbian, [Online]. Available: http://www.raspbian.org,
Accessed on: Jun, 28, 2017.

[6] International Energy Agency, Key world energy statistics OECD
Publishing, 2009, doi: 10.1787/9789264039537-en

[7] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoud-
hury, “Detecting energy bugs and hotspots in mobile apps,” in
Proc. Int. Symp. Foundations Softw. Eng., 2014, pp. 588–598.

[8] E. T. Barr, M. Harman, P. McMinn, Mu. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Trans. Softw.
Eng., vol. 41, no. 5, pp. 507–525, May 2015.

[9] M. C. Berenbaum, “What is synergy?” ASPET Pharmacological
Rev., vol. 41, no. 2, pp. 93–141, 1989.

[10] C. Bienia, “Benchmarking Modern Multiprocessors,” PhD thesis,
Dept of Computer Science, Princeton Univ., Princeton, NJ, 2011.

[11] M. A. Bokhari, B. R. Bruce, B. Alexander, and M. Wagner, “Deep
parameter optimisation on Android smartphones for energy mini-
misation — A tale of woe and proof-of-concept,” in Proc. Genetic
Evol. Comput. Conf. Companion, 2017, pp. 1501–1508.

[12] BP, “BP statistical review of world energy June 2014,” BP World
Energy Review, 2014, https://www.bp.com/content/dam/bp-
country/de_de/PDFs/brochures/BP-statistical-review-of-world-
energy-2014-full-report.pdf

[13] B. R. Bruce, “Deep parameter optimisation for face detection using
the Viola-Jones algorithm in OpenCV: A correction,” Dept. Com-
put. Scie., Univ. College London, London, U.K., Rep. no. RN/17/
07, 2017.

[14] B. R. Bruce, J. M. Aitken, and J. Petke, “Deep parameter optimisa-
tion for face detection using the Viola-Jones algorithm in Open-
CV,” in Proc. Symp. Search-Based Softw. Eng., 2016, pp. 238–243.

[15] B. R. Bruce, J. Petke, and M. Harman, “Reducing energy consump-
tion using genetic improvement,” in Proc. Genetic Evol. Comput.
Conf., 2015, pp. 1327–1334.

[16] N. Burles, E. Bowles, A. E. I. Brownlee, Z. A. Kocsis, J. Swan, and
N. Veerapen, ”Object-oriented genetic improvement for improved
energy consumption in Google Guava,” in Proc. Symp. Search-
Based Softw. Eng., 2015, pp. 255–261.

[17] N. Burles, E. Bowles, B. R. Bruce, and K. Srivisut, ”Specialising
Guava’s cache to reduce energy consumption,” in Proc. Symp.
Search-Based Softw. Eng., 2015, pp. 276–281.

[18] K. D. Cooper, D. Subramanian, and L. Torczon, “Adaptive opti-
mizing compilers for the 21st century,” J. Supercomputing, vol. 23,
no. 1, pp. 7–22, 2001.

[19] K. A. De Jong, “On using genetic algorithms to search program
spaces,” in Proc. Int. Conf. Genetic Algorithms, 1987, pp. 210–216.

[20] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in Proc.
Genetic Evol. Comput. Conf., 2009, pp. 947–954.

[21] G. Fursin, A. Cohen, M. Oâ�A�ZBoyle, and O. Temam, “A practical
method for quickly evaluating program optimizations,” in Proc. Int.
Conf. High-Perform. EmbeddedArchitectures Compilers, 2005, pp. 29–46.

[22] G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois,
et al., “Milepost GCC: Machine learning enabled self-tuning
compiler,” Int. J. Parallel Program., vol. 39, no. 3, pp. 296–327, 2011.

[23] M. Harman and B. F. Jones, “Search-based software engineering,”
Inf. Softw. Technol., vol. 43, no. 14, pp. 833–839, 2001.

[24] M. Harman, W. B. Langdon, Y. Jia, D. R. White, A. Arcuri, and
J. A. Clark, “The GISMOE challenge: Constructing the Pareto pro-
gram surface using genetic programming to find better pro-
grams,” in Proc. Int. Conf. Automated Softw. Eng., 2012, pp. 1–14.

[25] M. Harman and P. McMinn, “A theoretical and empirical analysis
of evolutionary testing and hill climbing for structural test data
generation,” in Proc. Int. Symp. Softw. Testing Anal., 2007, pp. 73–83.

[26] T. Hickey, Q. Ju, and M. H. Van Emden, “Interval arithmetic:
From principles to implementation,” J. ACM, vol. 48, no. 5,
pp. 1038–1068, 2001.

[27] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “Greenminer: A hardware based mining soft-
ware repositories software energy consumption framework,” in
Proc. Conf. Mining Softw. Repositories, 2014, pp. 12–21.

[28] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard, “Dynamic knobs for responsive power-aware
computing,” SIGPLAN Notices, vol. 46, pp. 199–212, 2011.

[29] T. Kalibera, L. Bulej, and P. Tuma, “Benchmark precision and ran-
dom initial state,” in Proc. Int. Symp. Perform. Eval. Comput. Tele-
commun. Syst., 2005, pp. 484–490.

[30] J. G. Koomey, “Worldwide electricity used in data centers,” Environ.
Res. Lett., vol. 3, no. 3, 2008, doi: 10.1088/1748-9326/3/3/034008

[31] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and
D. Jones, “Fast searches for effective optimization phase
sequences,” SIGPLAN Notices, vol. 39, pp. 171–182, 2004.

[32] J. Landsborough, S. Harding, and S. Fugate, “Removing the
kitchen sink from software,” in Proc. Genetic Evol. Comput. Conf.,
2015, pp. 833–838.

[33] W. B. Langdon and M. Harman, “Evolving a CUDA kernel from
an nVidia template,” in Proc. IEEE World Congr. Evol. Comput.,
2010, pp. 1–8.

[34] W. B. Langdon and M. Harman, “Optimising existing software
with genetic programming,” IEEE Trans. Evol. Comput., vol. 19,
no. 1, pp. 118–135, Feb. 2015.

[35] W. B. Langdon, M. Modat, J. Petke, and M. Harman, “Improving
3D medical image registration CUDA software with genetic pro-
gramming,” in Proc. Genetic Evol. Comput. Conf., 2014, pp. 951–958.

[36] W. B. Langdon, J. Petke, and B. R. Bruce, “Optimising quantisa-
tion noise in energy measurement,” Dept. Comput. Sci., Univ.
College London, London, U.K., Rep. no. RN/16/01, 2016.

[37] W. B. Langdon, J. Petke, and B. R. Bruce, “Optimising quantisa-
tion noise in energy measurement,” in Proc. Int. Conf. Parallel Prob-
lem Solving Nature, 2016, pp. 249–259.

[38] C. Le Goues, W. Weimer, and S. Forrest, “Representations and
operators for improving evolutionary software repair,” in Proc.
Genetic Evol. Comput. Conf. 2012, pp. 959–966.

[39] D. Li and W. G. J. Halfond, “Optimizing energy of HTTP requests
in android applications,” in Proc. Int. Workshop Softw. Develop. Life-
cycle Mobile, 2015, pp. 25–28.

[40] D. Li, S. Hao, J. Gui, and W. G. J. Halfond, “An empirical study of
the energy consumption of android applications,” in Proc. Int.
Conf. Softw. Maintenance Evolution, 2014, pp. 121–130.

[41] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan, “Calculating
source line level energy information for Android applications,” in
Proc. Int. Symp. Softw. Testing Anal., 2013, pp. 78–89.

[42] D. Li, A. H. Tran, and W. G. J. Halfond, “Making web applications
more energy efficient for OLED smartphones,” in Proc. Int. Conf.
Softw. Eng., 2014, pp. 527–538.

[43] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’ per-
spectives on green software engineering,” in Proc. IEEE Int. Conf.
Softw. Eng., 2016, pp. 237–248.

[44] I. Manotas, L. Pollock, and J. Clause, “SEEDS: A software engi-
neer’s energy-optimization decision support framework,” in Proc.
Int. Conf. Softw. Eng., 2014, pp. 503–514.

[45] R. T. Marler and J. S. Arora, “Survey of multi-objective optimiza-
tion methods for engineering,” Structural Multidisciplinary Optimi-
zation, vol. 26, no. 6, pp. 369–395, 2004.

[46] M. Mitchell, S. Forrest, and J. H. Holland, “The royal road for
genetic algorithms: Fitness landscapes and GA performance,” in
Proc. Eur. Conf. Artif. Life, 1992, pp. 245–254.

1168 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. 11, NOVEMBER 2019

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

http://www.7-zip.org
http://mageec.org/wiki/Power_Measurement_Board
https://github.com/popcornmix/omxplayer
https://github.com/popcornmix/omxplayer
https://www.raspberrypi.org
http://www.raspbian.org
http://dx.doi.org/10.1787/9789264039537-en
https://www.bp.com/content/dam/bp-country/de_de/PDFs/brochures/BP-statistical-review-of-world-energy-2014-full-report.pdf
https://www.bp.com/content/dam/bp-country/de_de/PDFs/brochures/BP-statistical-review-of-world-energy-2014-full-report.pdf
https://www.bp.com/content/dam/bp-country/de_de/PDFs/brochures/BP-statistical-review-of-world-energy-2014-full-report.pdf
http://dx.doi.org/10.1088/1748-9326/3/3/034008

[47] V. Mrazek, Z. Vasicek, and L. Sekanina, “Evolutionary approxi-
mation of software for embedded systems: Median function,” in
Proc. Genetic Evol. Comput. Conf. Companion, 2015, pp. 795–801.

[48] C. Nugteren, “Clblast: A tuned OpenCL BLAS library,” arXiv pre-
print arXiv:1705.05249, https://arxiv.org/pdf/1705.05249.pdf, 2017.

[49] M. Orlov and M. Sipper, “Flight of the FINCH through the Java
wilderness,” IEEE Trans. Evol. Comput., vol. 15, no. 2, pp. 166–182,
Apr. 2011.

[50] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[51] E. Paone, F. Robino, G. Palermo, V. Zaccaria, I. Sander, and
C. Silvano, “Customization of opencl applications for efficient
task mapping under heterogeneous platform constraints,” in Proc.
IEEE Des. Autom. Test Eur. Conf. Exhibit, 2015, pp. 736–741.

[52] J. Petke, S. O. Haraldsson,M. Harman,W. B. Langdon, D. R.White,
and J. R. Woodward, “Genetic Improvement of software: A com-
prehensive survey,” IEEE Trans. Evol. Comput., 2017, doi: 10.1109/
TEVC.2017.2693219.

[53] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using
genetic improvement & code transplants to specialise a C++ pro-
gram to a problem class,” in Proc. Eur. Conf. Genetic Program.,
2014, pp. 137–149.

[54] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
plausibility and correctness for generate-and-validate patch gen-
eration systems,” in Proc. Int. Symp. Softw. Testing Anal., 2015,
pp. 24–36.

[55] E. Schulte, J. Dorn, S. Harding, S. Forrest, and W. Weimer,
“Post-compiler software optimization for reducing energy,” ACM
SIGARCH Comput. Archit. News, vol. 42, no. 1, pp. 639–652, 2014.

[56] E. Schulte, S. Forrest, and W. Weimer, “Automated program
repair through the evolution of assembly code,” in Proc. Int. Conf.
Automated Softw. Eng., 2010, pp. 313–316.

[57] P. Sitthi-Amorn, N. Modly, W. Weimer, and J. Lawrence, “Genetic
programming for shader simplification,” ACM Trans. Graph.,
vol. 30, no. 6, 2011, Art. no. 152.

[58] J. Taylor, Introduction to Error Analysis: the Study of Uncertainties in
Physical Measurements. Herndon, VA, USA: Univ. Science Books,
1997.

[59] A. Tiwari, M. Laurenzano, L. Carrington, and A. Snavely, “Auto-
tuning for energy usage in scientific applications,” in Proc.
Euro-Par Workshops, 2011, pp. 178–187.

[60] D. R. White, A. Arcuri, and J. A. Clark, “Evolutionary improve-
ment of programs,” IEEE Trans. Evol. Comput., vol. 15, no. 4,
pp. 515–538, Aug. 2011.

[61] D. R. White, J. Clark, J. Jacob, and S. M. Poulding, “Searching for
resource-efficient programs,” in Proc. Genetic Evol. Comput. Conf.,
2008, pp. 1775–1782.

[62] F. Wu, W. Weimer, M. Harman, Y. Jia, and J. Krinke, “Deep
parameter optimisation,” in Proc. Genetic Evol. Comput. Conf.,
2015, pp. 1375–1382.

[63] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache
architecture for embedded systems,” in Proc. Int. Symp. Comput.
Archit., 2003, pp. 136–146.

Bobby R. Bruce received the BEng degree with
1st class honours in software engineering from
Edinburgh Napier University. He is working toward
the PhDdegree at theUniversity College London’s
Centre for Research on Evolution, Search, and
Testing (CREST). He has worked for both Micro-
soft and Synopsys as a software developer. During
his time at UCL, Bobby has worked in the emerg-
ing area of Genetic Improvement, with particular
emphasis on the optimisation of software’s energy
efficiency and automatic parallelisation.

Justyna Petke is a principal research fellow and
a proleptic lecturer with the University College
London. She has published articles on the app-
lications of genetic improvement. Her work on
GI won an ACM SIGSOFT distinguished paper
award at ISSTA and two Humie’s at GECCO
2014 and 2016 (awarded for human-competitive
results). She also has expertise in combinatorial
interaction testing and has a doctorate in Com-
puter Science from the University of Oxford in the
area of constraint solving. She is supported by an
Early Career EPSRC Fellowship.

Mark Harman is currently an engineering man-
ager with Facebook London, where he manages
a team, working on Search Based Software Engi-
neering (SBSE) with Facebook Scale. He is also
a part time professor of software engineering
with the Department of Computer Science, Uni-
versity College London, where he directed the
CRESTcentre for ten years (2006-2017) and was
Head of Software Systems Engineering (2012-
2017). This work was done while Mark was at
UCL full time. He is known for work on source

code analysis, software testing, app store analysis and empirical soft-
ware engineering. He was the co-founder of the field SBSE, which has
grown rapidly with more than 1,700 scientific publications from authors
spread over more than 40 countries. SBSE research and practice is now
the primary focus of his current work in both the industrial and scientific
communities. In addition to Facebook itself, Mark’s SBSE scientific work
is also supported by the ERC and EPSRC funding councils.

Earl T. Barr received the PhD degree from the Uni-
versity of California, Davis. He is a senior lecturer
(associate professor) with the University College
London. Before joining UCL, he was an Institute for
Information Infrastructure Protection (I3P) fellow.
Earl has published more than 50 peer-reviewed
papers on testing and program analysis, software
engineering, and computer security. His recent
work focuses on automated software trans-
plantation (Gold medal at GECCO’s Humies), the
application of empirical game theory to software

processes, and the application of NLP and ML to software. His work on
time-travel debugging is shipping in Microsoft’s Chakra JavaScript engine.
Earl has won three ACM distinguished paper awards; his paper entitled
“The Naturalness of Software” was a research highlight in the May 2016
Communications of the ACM. Earl dodges vans and taxis on his bike com-
mute in London.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BRUCE ETAL.: APPROXIMATE ORACLES AND SYNERGY IN SOFTWARE ENERGYSEARCH SPACES 1169

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on July 20,2020 at 07:17:51 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/pdf/1705.05249.pdf
http://dx.doi.org/10.1109/TEVC.2017.2693219
http://dx.doi.org/10.1109/TEVC.2017.2693219

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

