
WebJShrink: A Web Service for Debloating Java Bytecode

Konner Macias
University of California, Los Angeles

U.S.A
konnermacias@ucla.edu

Mihir Mathur
University of California, Los Angeles

U.S.A
mihirmathur@cs.ucla.edu

Bobby R. Bruce
University of California, Davis

U.S.A
bbruce@ucdavis.edu

Tianyi Zhang
Harvard University

U.S.A
tianyi@seas.harvard.edu

Miryung Kim
University of California, Los Angeles

U.S.A
miryung@cs.ucla.edu

ABSTRACT

As software projects grow in complexity, they come packaged with

under-utilized libraries and therefore become bloated. Though sev-

eral software debloating tools exist, none of them help developers

gain insights into how under-utilized those libraries are nor help de-

velopers build conidence in the behavior preservation of software

after debloating. To bridge this gap, we developedWebJShrink, a

visual analytics tool for analyzing and pruning bloated software

projects. WebJShrink is built on JShrink which uses static and

dynamic reachability analysis to determine the extent of software

bloat.WebJShrink provides rich visualizations of the bloat lurking

within a target project’s internal structure. It then removes un-

used features, and returns a safer, slimmer variant of the software

project. To illustrate the target project’s behavior preservation,We-

bJShrink examines the debloated software with its JUnit tests and

visualizes the test results. In evaluatingWebJShrink against 26 real

world systems, we foundWebJShrink could reduce software size

by up to 42%, 11% on average, while still passing 100% of unit tests

after debloating. We provide a video demonstratingWebJShrink

at https://youtu.be/yzVzcd-MJ1w.

CCS CONCEPTS

· Software and its engineering → Automatic programming;

Object oriented languages.

KEYWORDS

Java bytecode reduction, debloating, JShrink, software optimization

ACM Reference Format:

Konner Macias, Mihir Mathur, Bobby R. Bruce, Tianyi Zhang, and Miryung

Kim. 2020. WebJShrink: A Web Service for Debloating Java Bytecode. In

Proceedings of the 28th ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE ’20),

November 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 5 pages.

https://doi.org/10.1145/3368089.3417934

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3417934

1 INTRODUCTION

With the size and capability of software projects having grown

tremendously over recent decades, software bloat such as unused

features encumbers large projects. Modern object-oriented projects

are especially bloated due to an excessive use of indirection, abstrac-

tion, and ease of extendibility [9]. Bloated software poses a direct

security threat as unused software components increase security

attack surfaces. For instance, Java applications utilizing the popular

Apache Commons Collections library, prior to version 4.1, are vul-

nerable to deserialization attacks, that may result in the execution

of arbitrary code. Most applications using this Apache Commons

library do not require the unsafe classes related to deserialization

attacks; thus, such unnecessary classes should be removed from

the imported library to prevent this form of attack. Furthermore,

size reduction ofers additional beneits such as reduced download

times, reduced loading times, and faster serialization time in big

data systems such as Apache Spark.

Existing debloating tools such as ProGuard [1] and Jax [10] can

automatically detect and remove unused code via static reachability

analysis. However, these existing tools have several limitations.

Firstly, they do not help developers gain insights into the extent

of unused code through interactive visualizations. Secondly, while

dynamic language features such as lambda expressions, dynamic

proxy, relection, etc. are prevalent in modern Java applications,

these existing tools do not handle dynamic language features as

they rely exclusively on static analysis. Thus, they may remove

dynamically invoked code and subsequently induce unexpected

behavior in debloated software. Lastly, they do not check behavior

preservation of debloated software by running existing tests.

This paper presents a user-friendly visual analytics tool called

WebJShrink that helps developers gain insights into the extent of

software bloat and build trust about the safety of debloated soft-

ware by running regression tests. WebJShrink is designed to be

easy to use for developers and run as a software-as-a-service via

a web browser without needing any downloads or installations.

WebJShrink builds upon JShrink [3] and extends it with an intu-

itive GUI to provide rich, interactive visualizations of debloating

statistics and behavior preservation. Furthermore, while prior de-

bloating work uses static reachability analysis, JShrink combines

pure static analysis with dynamic proiling to account for dynamic

language features.

1665

https://youtu.be/yzVzcd-MJ1w
https://doi.org/10.1145/3368089.3417934
https://doi.org/10.1145/3368089.3417934


ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA K. Macias, M. Mathur, B. R. Bruce, T. Zhang, M. Kim

After performing reachability analysis, WebJShrink delivers in-

teractive visualizations detailing used and unused classes and meth-

ods sorted by library APIs.WebJShrink then presents a debloating

menu letting the user choose (1) how they want unused methods

removed: (2) whether application methods should be pruned as op-

posed to library methods only, (3) whether JShrink’s checkpointing

should be enabled, etc. Though JShrink currently supports four

diferent kinds of debloating transformations [10], its empirical

evaluation inds that unused method removal is the most efective,

achieving the majority of size reduction with minimal impact on be-

havioral preservation. Other transformations such as class hierarchy

collapsing only contribute marginal size reduction with high risks

of breaking software functionality [3]. Therefore, WebJShrink fo-

cuses on visualizing and analyzing the result of removing unused

methods in the web interface. Checkpointing reverts the target

application to checkpoints in case the debloating transformation

leads to any test failure.

Once debloating concludes,WebJShrink automatically runs the

freshly debloated software against its Maven test cases to gather

behavior preservation statistics.WebJShrink shows the percentage

of successful unit tests and size reduction statistics to the user using

a progress-bar visualization and data table, respectively, along with

a compressed ZIP ile of the debloated project. At this point, the

user can visibly witness the concrete existence of bloat lurking

within their software, and how the minimized project performs

against all tests previously set against it.WebJShrink ofers this

entire debloat process in a streamlined manner, with all intensive

computation oloaded to the cloud, allowing developers to analyze

and safely debloat their project repository without any local system

requirements. We have made the code of WebJShrink available to

public at https://doi.org/10.6084/m9.igshare.12518474

2 MOTIVATING EXAMPLE AND TOOL USAGE

Suppose Alice is a developer shipping dieforfree/qart4j1, an

image to QR code ASCII art generator, and needs to reduce the

size of her project prior to release. First, she wishes to analyze the

existence and severity of bloat within her Java code base. She visits

theWebJShrink website, and is prompted for the project’s GitHub

identiier and to list relevant call graph analysis options, as shown

in Figure 2. She must specify the project’s entry points: main for

all main methods (when the project is an executable application),

public for all public methods (if the project is a library), and test

for all JUnit test methods. Any combination of these three are

permitted, and are used to determine method reachability via call

graph analysis. Alice may also select whether the JShrink library

uses either CHA [5] or Spark [7] algorithm to generate the call

graph (Spark is more computationally intensive but generates a

more exact, smaller call graph). Lastly, she indicates whether to

utilize dynamic analysis, in addition to a purely static approach.

Upon completion, Alice is presented visualizations to aid her

understanding of what code is, and is not, used. This is shown

in Figure 1. WebJShrink displays two pie charts, providing an

overview of bloat in terms of the ratio of used and unused Java

classes (① in Figure 1) and methods (③ in Figure 1). Moving the

1https://github.com/dieforfree/qart4j

cursor over any pie chart slice relects the actual count of used or

unused methods/classes (② in Figure 1).

WebJShrink further breaks down this data by each of the project’s

library dependencies via a horizontal bar chart (④ in Figure 1). From

this, Alice may click on each library and discover which speciic

classes, within that library, are used or not (⑤ and ⑥ in Figure 1).

From this single screen, Alice is presented a clear summary of the

extraneous code in her repository and is now better educated for

choosing to debloat her project prior to release.

Alice is ready to debloat her application, and proceeds to select-

ing the debloating options, as shown in ⑦ of Figure 1. The options

presented are to łPrune Appž, which debloats both the application

and library code, as opposed to library code only, łuse Checkpoint-

ingž which reverts any debloat transformations which result in

test failures; and whether to remove the entire methods including

their header, or to remove just their body, or to leave an excep-

tion message in place of the removed method. Removing just the

method body may be safer in the case where a call graph is not

complete due to the existence of methods executed dynamically.

Missing methods result in MethodNotFoundExceptions, whereas

blank methods will not.

Once the options for debloating are selected, Alice selects łDe-

bloat this Repositoryž and triggers the unused method removal

procedure in JShrink. Once complete, Alice is presented size re-

duction and test behavior preservation statistics visualized through

a before-and-after data table and a unit test success progress bar,

respectively (as shown in Figure 3). Alice can now witness the

reality of bloat lurking within her project, and how her project

has been become minimized in terms of byte size as a result of

JShrink. Further, Alice can gain complete conidence in the cor-

rectness of this debloating process in viewing how her debloated

software performed against all unit tests previously ran against

it. From this screen, Alice may download the resulting debloated

project (debloated library dependencies included), packaged as a

ZIP ile, ready for delivery.

3 IMPLEMENTATION

This section describes the implementation details of WebJShrink.

WebJShrink is built using a client/server architecture; the client is

a React.js single-page web application and the server is a Python

application implemented using the Flask microframework. There

are four main components of the application: (1) Preparation, (2)

Call Graph Analysis, (3) Data Extraction and Visualization, (4) De-

bloating Transformation and Delivery.

Preparation.Given a GitHub repository and necessary input pa-

rameters, the WebJShrink server clones the repository and builds

the project. To reduce the efort of building a project, we focus on

Java projects built by the popular build system, Maven [8]. We lever-

age the Maven dependency plugin2 to resolve all external library

dependencies of a project, a necessary task in building an accu-

rate call-graph. After a successful Maven build, the server executes

JShrink to perform reachability analysis.

Call Graph Analysis. JShrink determines the reachability of

methods and classes via call graph analysis. The entry points spec-

iied on WebJShrink’s landing page are the starting points for

2https://maven.apache.org/plugins/maven-dependency-plugin/analyze-mojo.html

1666

https://doi.org/10.6084/m9.figshare.12518474
https://github.com/dieforfree/qart4j
https://maven.apache.org/plugins/maven-dependency-plugin/analyze-mojo.html


WebJShrink: A Web Service for Debloating Java Bytecode ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 1: Visualizations showing used and unused classes, methods and classes by library for dieforfree/qart4j.

Figure 2: Form for specifying repository and options for

entry-point and call graph analysis.

generating a call graph such that all methods found to be reachable

from these entry points are recorded within the graph. JShrink

extends Soot [11], a bytecode analysis and modiication framework

to carry out this debloating bytecode transformation. Working at

the bytecode level is necessary, as we debloat libraries which we

cannot expect to be delivered to the user in any other form (Maven,

for example, downloads dependencies as Java Jar archives).

Previous work, such as JRed [6], focused on debloating by creat-

ing call graphs in a completely static manner. However, the preva-

lent use of dynamic language features in Java such as relection,

ambiguous refraction, dynamic class loading, dynamic proxy, in-

vokedynamic (lambda expression), JNI, and serialization makes

debloating unsafe, as dynamically invoked code is not captured

Figure 3: Code reduction statistics and test behavior exami-

nation results presented to the user after debloat completes.

in static call graph analysis. To solve this problem, we design and

implement our own dynamic proiling component, called JMTrace.

JMTrace creates a log of the dynamically invoked call targets when

running the target project’s JUnit test cases. We then use this log to

extend our call graph; including methods that are accessed via re-

lective calls and, in turn, any methods that may thereby be reached

from them. JMTrace injects logging statements at the entry and

exit of each method in a class during class loading. Similar to Tami-

Flex [2], JMTrace instruments Java relection call sites in bytecode

to log which methods are invoked via relection at runtime. In doing

so, it obtains a log of all call targets executed via a test run.

1667



ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA K. Macias, M. Mathur, B. R. Bruce, T. Zhang, M. Kim

We use the ASM bytecode manipulation and analysis library [4]

to parse the target project’s bytecode to develop a set of all classes

and methods within the project. From this, we can quickly de-

termine the set of methods and classes that are "unreachable" or

"unused".

Data Extraction and Visualization. After running JShrink,

the WebJShrink server creates a map of each class to a library,

and labels the methods within each class as being either used or

unused, as determined by JShrink. This map is then relayed to

the browser for data visualization. Using the JavaScript library,

react-chartjs-23, WebJShrink delivers pie charts of used and

unused classes, along with an interactive horizontal bar chart de-

tailing usage of each API in terms of class count.

Project Debloating and Delivery. JShrink eliminates unused

methods by extending Soot’s bytecode transformation APIs [11] to

erase methods entirely, their method bodies, or by replacing their

method bodies with an exception throw to indicate the removal of

a method. While JShrink support four kinds of debloating transfor-

mations (‘method removal’, ‘method inlining’, ‘ield removal’, and

‘class hierarchy collapsing’),WebJShrink’s visual interface focuses

on ‘method removal’ as it is the most efective in terms of size

reduction [3]. If ‘checkpointing’ is enabled in WebJShrink, test-

failure inducing transformations are reversed to ensure debloating

safety. Upon completion of debloating transformation,WebJShrink

automatically runs the debloated project against its Maven unit

tests and reports test behavior preservation statistics back to the

user. A compressed deliverable (ZIP ile) is then returned back to

the user available for download. This compressed deliverable con-

tains both the debloated application code and the debloated library

dependencies.

4 EVALUATION RESULTS

Our technical research paper on JShrink [3] presents comprehensive

comparative evaluation against existing debloating tools, JRed [6],

Jax [10], and ProGuard [1]. Here, we summarize our evaluation

results briely.

We debloated 26 popular GitHub Repositories as displayed in

Table 1. For each experiment, we built the call graph by specify-

ing main, public and test methods as entry points, used CHA and

JMTrace as our call graph reachability analysis, pruned both ap-

plication and library code, removed both the header and body of

unused methods entirely, and utilized checkpointing. We found

reductions of up to 42.2%, 11.0% on average, in bytecode size. Fur-

thermore, we achieved complete software correctness modulo the

target projects’ JUnit test cases, with 100% passing successfully. This

is a signiicant improvement over prior work. Jax and Proguard

cause 3174 (58%) and 496 (9%) of tests to fail respectively, demon-

strating the necessity of handling dynamic features and ensuring

type safety.

5 CONCLUSION AND FUTUREWORK

In this paper, we introduce WebJShrink, a Java debloating visual-

ization tool. WebJShrink shows the extent of bloat to be removed,

allows the user to select available debloating options, and visualizes

3react-chartjs-2 and is available from http://jerairrest.github.io/react-chartjs-2/

Table 1: Code Size Reduction and Test Failures of 26 Popular

GitHub Repositories

Application
Code Size

Reduction

Test

Failures
Tests

aragozin/jvm-tools 1.7% 0 102

bukkit/bukkit 15.4% 0 906

dieforfree/qart4j 42.2% 0 1

dubboclub/dubbokeeper 13.8% 0 1

eirslett/frontend-maven-plugin 18.7% 0 6

google/gson 0.3% 0 1050

JakeWharton/DiskLruCache 0.1% 0 61

JakeWharton/retroit1-okhttp3-client 8.4% 0 9

JakeWharton/rxrelay 15.7% 0 58

JakeWharton/rxreplayingshare 20.1% 0 20

junit-team/junit4 1.7% 0 1081

kevinsawicki/http-request 0.2% 0 163

mabe02/lanterna 0.2% 0 34

notnoop/java-apns 13.8% 0 111

pagehelper/Mybatis-PageHelper 20.1% 0 106

pedrovgs/algorithms 0.0% 0 493

sockeqwe/fragmentargs 8.9% 0 15

square/moshi 0.2% 0 835

tomighty/tomighty 16.5% 0 26

zeroturnaround/zt-zip 5.4% 0 121

esoco/gwt-cal 16.5% 0 92

peter-lawrey/Java-Chronicle 0.0% 0 8

lehphyro/maven-conig-processor-plugin 25.4% 0 77

jboss-logging/jboss-logmanager 11.1% 0 42

qiujiayu/AutoLoadCache 16.5% 0 11

alibaba/TProiler 4.7% 0 3

Total - 0 5432

Mean 11.0% - -

Median 9.9% - -

test behavior preservation before and after debloating transforma-

tion. WebJShrink runs as a software-as-a-service and provides

an intuitive interface for the user to specify the target repository

and to download the debloated software as a package, upon view-

ing debloating statistics. The evaluation of JShrink on 26 Java

applications shows size reductions up to 42.2% (mean: 11.0%) in

bytecode size is achievable with no degradation in software correct-

nessÐ100% unit test success when running the debloated software

against its Maven unit tests.

To our knowledge, WebJShrink is the irst end-to-end debloat-

ing software tool and visualization service that handles dynamic

language features safely and helps the user to examine behavior

preservation using existing tests. Future work should focus on

conducting user studies, and performing stress testing to ensure

scalability across multiple concurrent users. We also see potential

in integrating our visualizations into an IDE.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments. The par-

ticipants of this research are in part supported by NSF grants CCF-

1764077, CCF-1527923, CCF-1723773; ONR grant N00014-18-1-2037;

an Intel CAPA grant; a Samsung grant; the Google PhD Fellowship

program; and the Alexander von Humboldt Foundation.

1668

http://jerairrest.github.io/react-chartjs-2/


WebJShrink: A Web Service for Debloating Java Bytecode ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

REFERENCES
[1] [n. d.]. ProGuard: Java and Android Apps Optimizer. https://www.guardsquare.

com/en/products/proguard. ([n. d.]). Accessed: 2019-12-13.
[2] Eric Bodden, Andres Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. [n. d.].

Taming relection: Aiding static analysis in the presence of relection and custom
class loaders. In Proceedings of the 2011 International Conference on Software
Engineering — ICSE ’11. ACM, 241ś250. https://doi.org/10.1145/1985793.1985827

[3] Bobby R. Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung
Kim. 2020. JShrink: In-depth Investigation into Debloating modern Java Ap-
plications. In Proceedings of the 2020 ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering — ESEC/FSE
’20. ACM. https://doi.org/10.1145/3368089.3409738

[4] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. 2002. ASM: A Code
manipulation tool to implement adaptable systems. In Adaptable and extensible
component systems.

[5] Jefrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In Proceedings of the 1995
European Conference on Object-Oriented Programming — ECOOP ’95. Springer,
77ś101. https://doi.org/10.1007/3-540-49538-X_5

[6] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. JRed: Program customization
and bloatware mitigation based on static analysis. In Proceedings of the 2016
Computer Software and Applications Conference — COMPSAC ’16, Vol. 1. IEEE,
12ś21. https://doi.org/10.1109/COMPSAC.2016.146

[7] Ondrej Lhotak. 2002. Spark: A lexible points-to analysis framework for Java.
[8] Frederic P. Miller, Agnes F. Vandome, and John McBrewster. 2010. Apache Maven.

Alpha Press.
[9] César Soto-Valero, Nicolas Harrand, Martin Monperrus, and Benoit Baudry. 2020.

A Comprehensive Study of Bloated Dependencies in the Maven Ecosystem. arXiv
preprint arXiv:2001.07808 (2020).

[10] Frank Tip, Peter F Sweeney, Chris Lafra, Aldo Eisma, and David Streeter. 2002.
Practical extraction techniques for Java. ACM Transactions on Programming
Languages and Systems — TOPLAS ’02 24, 6 (2002), 625ś666. https://doi.org/10.
1145/586088.586090

[11] Raja Vallee-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Sundaresan Vijay. 1999. Soot Ð A Java bytecode optimization framework. In Pro-
ceedings of the 1999 Conference of the Centre for Advanced Studies on Collaborative
Research — CASCON ’99. IBM Press, 13ś23.

1669

https://www.guardsquare.com/en/products/proguard
https://www.guardsquare.com/en/products/proguard
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/3368089.3409738
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.1109/COMPSAC.2016.146
https://doi.org/10.1145/586088.586090
https://doi.org/10.1145/586088.586090

	Abstract
	1 Introduction
	2 Motivating Example and Tool Usage
	3 Implementation
	4 Evaluation Results
	5 Conclusion and Future Work
	Acknowledgments
	References

