
Enabling Reproducible and
Agile Full-System Simulation

Work by Bobby R. Bruce, Ayaz Akram, Hoa Nguyen, Kyle Roarty, Mahyar Samani,
Marjan Fariborz, Trivikram Reddy, Matthew D. Sinclair, and Jason Lowe-Power

Presented by Bobby R. Bruce

The Problem

The Problem

The Problem

The Problem

The Problem

Results

The Problem

Results

The Problem

Results
How do we manage this information?

The Problem

Results
How do we manage this information?

How do we easily reproduce what we’ve done?

The Problem

Results
How do we manage this information?

How do we easily reproduce what we’ve done?
How do we communicate our setup/results in a standardized way?

The Problem

Results

What did
I do at

iteration
102

again?

How do we manage this information?
How do we easily reproduce what we’ve done?

How do we communicate our setup/results in a standardized way?

A Full-System workflow

simulation

system configuration
(python script)

simulator executable

static configuration
(e.g., x86, Two_Level coherence)

simulator source
(e.g., gem5 20.1)

parameters to configuration
(e.g., # of cores, memory tech.)

kernel (e.g., Linux)

operating system
(e.g., Ubuntu 20.04)

runtime

compiler

benchmark source executables

benchmark
output

microarchitectural
statistics

visualizations

OutputSimulation

Simulator

Workload

Environment disk image

Input

For most experiments:

For most experiments:

Too many configurations!

For most experiments:

Too many configurations!

Too many results!

For most experiments:

Too many configurations!

Too many results!

No standardized way to communicate setups, or allow reproducibility.

For most experiments:

Too many configurations!

Too many results!

No standardized way to communicate setups, or allow reproducibility.

No official source of components/resources.

The Solution

The Solution

gem5art

• Artifacts.

• Reproducibility.

• Testing.

The Solution

gem5art

• Artifacts.

• Reproducibility.

• Testing.

The Solution

gem5art

• Artifacts.

• Reproducibility.

• Testing.

gem5 Resources

• Pre-built.

• gem5-compatible.

• Open-source, extendable.

gem5art:

A high-level overview

gem5art:

A high-level overview

gem5art:

A high-level overview

Artifacts

gem5art:

A high-level overview

Artifacts

Database

gem5art:

A high-level overview

Artifacts
Run

Database

gem5art:

A high-level overview

Artifacts
Run

Consists of

Database

gem5art:

A high-level overview

Artifacts
Run

Consists of

Database

Tasks

Creates

gem5art:

A high-level overview

Artifacts
Run

Consists of

Database

Tasks

Creates

gem5

gem5art:

A high-level overview

Artifacts
Run

Consists of

Database

Tasks

Creates

gem5

Stores results

as

gem5art Workflow:

A slightly lower-level view

gem5art Workflow:

A slightly lower-level view

gem5art Workflow:

A slightly lower-level view

gem5 Resources:

A high-level overview

gem5 repositoryPre-Built
Resources

-v21.0
-v20.1
-v20.0

-v21.0
-v20.1
-v20.0

-v21.0
-v20.1
-v20.0

gem5 Resources

gem5 Resources:

A high-level overview

gem5 repositoryPre-Built
Resources

-v21.0
-v20.1
-v20.0

-v21.0
-v20.1
-v20.0

-v21.0
-v20.1
-v20.0

gem5 Resources

16+
apps/

benchmarks/
images

Use-Case 1: Co-Design

Use-Case 1: Co-Design

“How does the execution time of PARSEC applications change between Ubuntu 18.04
and 20.04, for single core and 8 core CPU setups?”

Use-Case 1: Co-Design

Use-Case 1: Co-Design
Moving parts:

Operating System: Ubuntu 18.04, Ubuntu 20.04

Applications: 10 benchmark applications

Num Processors: Single Core, 8 Core

Use-Case 1: Co-Design
Moving parts:

Operating System: Ubuntu 18.04, Ubuntu 20.04

Applications: 10 benchmark applications

Num Processors: Single Core, 8 Core

This produces a total of 40 runs.

Use-Case 1: Co-Design
Moving parts:

Operating System: Ubuntu 18.04, Ubuntu 20.04

Applications: 10 benchmark applications

Num Processors: Single Core, 8 Core

This produces a total of 40 runs.

Each run produces results. In this case we concern
ourselves with execution time.

Use-Case 1: Co-Design

Use-Case 1: Co-Design
With gem5art/gem5 resources this was easy

Use-Case 1: Co-Design
With gem5art/gem5 resources this was easy

1) Obtain the Parsec Benchmark from
gem5 resources

Use-Case 1: Co-Design
With gem5art/gem5 resources this was easy

2) Register artifacts

1) Obtain the Parsec Benchmark from
gem5 resources

Use-Case 1: Co-Design
With gem5art/gem5 resources this was easy

2) Register artifacts
3) Create a Run Script

1) Obtain the Parsec Benchmark from
gem5 resources

Use-Case 1: Co-Design
With gem5art/gem5 resources this was easy

2) Register artifacts
3) Create a Run Script

4) Execute

1) Obtain the Parsec Benchmark from
gem5 resources

Use-Case 1: Co-Design
With gem5art/gem5 resources this was easy

2) Register artifacts
3) Create a Run Script

4) Execute
5) Query the database for desired results

1) Obtain the Parsec Benchmark from
gem5 resources

Use-Case 1: Co-Design
With gem5art/gem5 resources this was easy

2) Register artifacts
3) Create a Run Script

4) Execute
5) Query the database for desired results

1) Obtain the Parsec Benchmark from
gem5 resources

Use-Case 2: Testing!

Use-Case 2: Testing!

“How does gem5 perform when booting Linux on
different architecture setups?”

Use-Case 2: Testing!

“How does gem5 perform when booting Linux on
different architecture setups?”

This is a
common

gem5 test

Use-Case 2: Testing

Use-Case 2: Testing
Moving parts:

Kernel: 4.4.186, 4.9.186, 4.14.134, 4.19.84, 5.4.49

Num Processors: 1, 2, 4, 8

CPU Models: kvm, atomic, simple, o3

Memory System: classic, MI_Example, MESI_Two_Level

Boot: Kernel Only, Full Ubuntu

Use-Case 2: Testing
Moving parts:

Kernel: 4.4.186, 4.9.186, 4.14.134, 4.19.84, 5.4.49

Num Processors: 1, 2, 4, 8

CPU Models: kvm, atomic, simple, o3

Memory System: classic, MI_Example, MESI_Two_Level

Boot: Kernel Only, Full Ubuntu

This produces a total of 480 runs.

Use-Case 2: Testing
Moving parts:

Kernel: 4.4.186, 4.9.186, 4.14.134, 4.19.84, 5.4.49

Num Processors: 1, 2, 4, 8

CPU Models: kvm, atomic, simple, o3

Memory System: classic, MI_Example, MESI_Two_Level

Boot: Kernel Only, Full Ubuntu

This produces a total of 480 runs.

For each run we wish to keep track of whether the run was a
success, there was a gem5 error, or a kernel panic.

Use-Case 2: Testing

Thank you!

Presented by Bobby R. Bruce

Artifact: https://doi.org/10.6084/m9.figshare.14176802
Paper at: https://arch.cs.ucdavis.edu/assets/papers/ispass21-gem5art.pdf

Work by Bobby R. Bruce, Ayaz Akram, Hoa Nguyen, Kyle Roarty, Mahyar Samani,
Marjan Fariborz, Trivikram Reddy, Matthew D. Sinclair, and Jason Lowe-Power

Enabling Reproducible and Agile Full-System Simulation

Research supported by: NSF Grants CNS-1925724 and CNS-1850566

https://doi.org/10.6084/m9.figshare.14176802
https://arch.cs.ucdavis.edu/assets/papers/ispass21-gem5art.pdf

