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For most experiments:

Too many configurations!

Too many results!

No standardized way to communicate setups, or allow reproducibility.

No official source of components/resources.
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• Artifacts.

• Reproducibility.

• Testing.

gem5 Resources

• Pre-built.

• gem5-compatible.

• Open-source, extendable.
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Use-Case 1: Co-Design
Moving parts:


Operating System: Ubuntu 18.04, Ubuntu 20.04

Applications: 10 benchmark applications


Num Processors: Single Core, 8 Core

This produces a total of 40 runs.

Each run produces results. In this case we concern 
ourselves with execution time.
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Use-Case 2: Testing!

“How does gem5 perform when booting Linux on 
different architecture setups?”

This is a 
common 

gem5 test
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Kernel: 4.4.186, 4.9.186, 4.14.134, 4.19.84, 5.4.49

Num Processors: 1, 2, 4, 8


CPU Models: kvm, atomic, simple, o3

Memory System: classic, MI_Example, MESI_Two_Level


Boot: Kernel Only, Full Ubuntu

This produces a total of 480 runs.

For each run we wish to keep track of whether the run was a 
success, there was a gem5 error, or a kernel panic.
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