
Enabling Reproducible and Agile Full-System
Simulation

Bobby R. Bruce∗, Ayaz Akram∗, Hoa Nguyen∗, Kyle Roarty†, Mahyar Samani∗, Marjan Friborz∗,
Trivikram Reddy∗, Matthew D. Sinclair†‡, and Jason Lowe-Power∗

∗University of California, Davis

Davis, California

{bbruce, yazakram, hoanguyen, msamani,

mfariborz, tvreddy, jlowepower}@ucdavis.edu

†University of Wisconsin, Madison

Madison, Wisconsin

kroarty@wisc.edu, sinclair@cs.wisc.edu

‡AMD Research

Abstract—Running experiments in modern computer archi-
tecture simulators can be a difficult and error-prone endeavor.
Users must track many configurations, components and outputs
between simulation runs. The gem5 simulator is no exception
to this, requiring researchers to gather, organize, and create a
significant number of components for a single simulation.

In this paper, we present the GEM5ART framework, a tool to
aid gem5 users in better structuring and running architecture
simulations, and GEM5 RESOURCES, a suite of resources with
known compatibility with the simulator. These new additions to
the gem5 project make full system simulation easier, allowing
researchers to concentrate more so on their architectural inno-
vations over setting up the simulation framework. The GEM5ART

framework carefully logs the resources used in a gem5 simulation
and places the results obtained within a database, thus enabling
simple reproduction of experiments. The pre-built resources allow
researchers to jump straight into running simulations rather
than having to spend valuable time creating them. GEM5ART has
been released with a permissive, open source license allowing
the broader computer architecture community to contribute as
workloads and workflows evolve.

An archive of the data, an related materials, presented in
this paper can be found at https://doi.org/10.6084/m9.figshare.
14176802.

Index Terms—computer architecture, simulation

I. INTRODUCTION

As Moore’s law comes to its end, there is a growing

understanding that future gains in computer performance will

come from new architectural designs. For this to materialize,

more sophisticated tooling is required, particularly in the

domain of architecture simulators. However, the complexity

of these tools is growing alongside their sophistication. At

present, this complexity already burdens end users, leading to

frustration and occasional errors in experimental results. We

need a solution to help reign in this complexity to enable future

architectural innovations.

The burden of complexity is particularly noticeable in full-
system simulators, such as gem5 [1], [2].1 Full-system simu-

lators have enough fidelity to boot (mostly) unmodified oper-

ating systems, emulate I/O devices, and execute unmodified

applications. Today’s full system simulators are unlike prior

simulators (e.g., SimpleScalar [3]) which required relatively

little setup where the only inputs were the simulator binary

and a statically compiled executable. Today’s full system

simulators, like gem5, require many more inputs, such as

an OS kernel, benchmarks (which themselves depend on a

compiler, runtimes, and more), static and dynamic parameters,

a disk image, etc. Figure 1 shows an example of this complex

workflow.

It is important to use up-to-date versions of all items utilized

in any experiment as runtimes, compilers, kernels, and other

components are changing frequently. It is also important to

record the exact versions used and, preferably, compare how

new versions of these components impact performance. This

is particularly important as computer architecture research

increasingly requires cross-stack studies that investigate how

changes in any and all levels, from hardware, through the

kernel, wider OS, and up to the level of applications, impact

the computer systems. These studies require methods to easily

track and update each of the resources required for simulation.

In this paper, we focus on providing support for the gem5

architectural simulator; one of the most popular simulators

currently used in academia and industry. While some other

simulators come pre-packaged with default designs and config-

urations, gem5 focuses on flexibility. This makes it powerful,

but puts the onus on the user to provide and configure

components themselves. It is a hurdle to initiating architecture

simulations, and the iterative nature of research means keeping

1http://www.gem5.org

183

2021 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-7281-8643-6/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPASS51385.2021.00035

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Pe

rf
or

m
an

ce
 A

na
ly

sis
 o

f S
ys

te
m

s a
nd

 S
of

tw
ar

e
(IS

PA
SS

) |
 9

78
-1

-7
28

1-
86

43
-6

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IS
PA

SS
51

38
5.

20
21

.0
00

35

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

track of each gem5 run’s unique setup; a non-trivial task.

Tracking all information (e.g., the gem5 version, the hardware

configuration, the boot configuration, the benchmark, etc.)

used to produce each output is error prone, and ripe for

automation. It is for this reason we developed GEM5ART.
The gem5 Artifact, Reproducibility, and Testing framework,

which we refer to as “GEM5ART”, is a set of Python libraries

which can be used to run gem5 experiments in a clear and

structured manner, and facilitates the storing of results and

configuration information in a database for future reference

and reproduction. Our overarching goal with GEM5ART is to

improve the reproducibility and agility of full-system simula-
tion, which should ultimately increase end-user productivity.

The GEM5ART framework is open source and distributed via

the Python Packaging Index (PyPI)2. This enables simple

installation with pip the Python package installer. GEM5ART

is an open source, freely available project3.
The GEM5ART framework is only one component for per-

forming full system simulation. Users must obtain all of

the resources required for their experiments. For instance, a

benchmark suite, such as PARSEC [4], must be downloaded,

compiled, and then stored in an appropriate disk image be-

fore being loaded in a gem5 configuration. In an effort to

reduce the complexity of obtaining such components, we

have developed GEM5 RESOURCES, a repository containing

commonly used gem5 simulation components such as kernels,

tests, and benchmarks. While neither is dependent on another,

we believe GEM5ART and GEM5 RESOURCES function best

when working in tandem, with GEM5 RESOURCES providing

commonly used components and GEM5ART recording which

of these components are used, and the results obtained from

gem5 experiments.
GEM5ART enforces a well-documented protocol for running

gem5 experiments. This documented protocol allows the re-

sults of gem5 experiments to be portable and reproducible.

By storing all inputs and results in a database, these artifacts

may be made as public as the end-user desires, and freely

available tools may be used to process this data to create rich

data visualizations.
The main contribution of this paper is the GEM5ART

tool which simplifies running gem5 experiments and GEM5

RESOURCES which contains 16 benchmark suites, tested OS

kernels, applications, as well as a selection of gem5 specific

tests. Both of these contributions are open source and under

active development. Similar to a new benchmark suite, this

work enables new computer architecture research.
To demonstrate the efficacy of GEM5ART, we present three

use cases. (1) We show the importance of using up-to-date

operating systems by comparing the results from the PARSEC

benchmark suite on two different long-term service releases

of Ubuntu. (2) We show the flexibility and ease of use of

GEM5ART by testing an extensive cross product of system

configurations and Linux kernels. The results of this test

2https://pypi.org/project/pip
3Distributed within the gem5 source repository: https://gem5.googlesource.

com/public/gem5.

simulation

system con guration
(python script)

simulator executable

static con guration
(e.g., x86, Two_Level coherence)

simulator source
(e.g., gem5 20.1)

parameters to con guration
(e.g., # of cores, memory tech.)

kernel (e.g., Linux)

operating system
(e.g., Ubuntu 20.04)

runtime

compiler

benchmark source executables

benchmark
output

microarchitectural
statistics

visualizations

OutputSimulation

Simulator

Workload

Environment disk image

Input

Fig. 1: An example workflow for full-system simulation with

gem5.

can help the gem5 developers concentrate their effort on

bugs in gem5 which affect only a specific configuration or

workload. (3) We show how the performance of different

GPU applications is affected by the use of different register

allocators.

We outline how gem5 works and is used by researchers in

Section II. We discuss any related work in Section III, then

the technical design of GEM5ART and how it addresses the

pain-points present in the usual workflow in Section IV. In

Section V we describe GEM5 RESOURCES, and, in Section VI,

we demonstrate GEM5ART and GEM5 RESOURCES on three

use-cases. In Section VII we conclude the paper and discuss

the potential impact of our work.

II. BACKGROUND

To understand why GEM5ART is necessary, we should

understand the current workflow of gem5 and the various

components and resources needed to run a simulation.

A typical gem5 full-system workflow is shown in Figure 1.

The user compiles the gem5 source with a static configuration
(e.g., targeting the x86 ISA with a two level cache hierarchy)

which then generates the gem5 simulator executable. From this

the user compiles a kernel binary given the Linux kernel source
code and a kernel configuration file. An operating system is

then installed on a disk image, and a benchmark is compiled

from a source on the disk image. The simulation can then be

run with a given system configuration in the form of a Python

script. A simulation will produce the benchmark output and

a variety of microarchitectual statistics for evaluation of the

configuration on the benchmark.

As is shown in this example, there are many different

components required or created for a single run of gem5. The

gem5 executable, for example, is compiled from the gem5

source via the project’s git repository4. This executable will

vary between versions of gem5, which are released roughly

three times a year. Furthermore, gem5 may be compiled

with different static configurations to simulate different ISAs

and evaluate different cache hierarchy setups. It is therefore

important to keep track of these components, and correctly

document then link them to a particular simulation run. It is

for this reason GEM5ART was created.

4https://gem5.googlesource.com

184

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

There is also the question of where a user is to obtain

additional resources, such as benchmarks. We provide these

in an “out-of-the-box“ manner via GEM5 RESOURCES; a set

of freely-available resources with known compatibility with

gem5. GEM5 RESOURCES is discussed in more detail in

Section V.

III. RELATED WORK

Few of the existing frameworks available to perform ex-

periments in a systematic way are compatible with complex

simulators such as gem5. FEX [5], Occam [6], and Collective

knowledge [7], for example, are far too general to incorporate

into the gem5 simulation workflow. FEX [5] is a Docker con-

tainer based evaluation framework for general software sys-

tems which allows reproducible experiments and customized

workflows. Occam [6] is an active curation platform, which

allows sharing of artifacts and workflows. It allows to artifacts

to be complex tools/software like architectural simulators.

Collective knowledge [7] is a cross-platform framework to

automate repetitive tasks, but mainly focuses on machine

learning frameworks. In comparison to these tools, GEM5ART

is a customized framework to run experiments with gem5 and

as a result requires less effort by the user to achieve the same

goals in comparison to other tools. Moreover, GEM5ART is

focused more on documenting the experiments to enable repro-

ducibility and less on automation in contrast to the previously

mentioned tools. Another important and novel contribution is

GEM5 RESOURCES which provides a wide set of benchmarks,

tests and other required dependencies ready to be used with

gem5.

There also exist some gem5 specific tools or methodolo-

gies [8], [9], which do not have the same goals as GEM5ART,

but regulate gem5 usage in some way. Walker et al. [8]

proposed a methodology for finding sources of error in CPU

performance models and suggested a validation methodology

based on clustering and correlation analysis. DiagSim, pro-

posed by Jo et al. [9], is a tool to diagnose hidden details

(which can have major effect on simulation results) of different

simulators including gem5. GEM5ART is not a tool to find

inaccuracies in gem5 but provides necessary infrastructure

to bring structured approach to gem5 validation experiments

which otherwise can be very hard to manage (evident by our

own experience with such studies).

IV. GEM5ART

The high-level goal of GEM5ART is to provide a structured

and documented protocol for conducting computer architecture

experiments. The GEM5ART framework requires researchers

to document every input required for a particular experiment,

which increases the reproducibility and understandability of

these experiments.

A. Components of the Framework

GEM5ART is composed of three interrelated Python pack-

ages.

gem5art-artifact

gem5art-run

gem5art-tasks
task-manager

1
2

3

4

5

6

7

8

Fig. 2: User interaction with GEM5ART

a) Artifacts: Artifacts are the objects and/or components

used in a gem5 run, or produced via a gem5 execution.

Examples include the gem5 binary, the gem5 configuration

files, a GEM5 RESOURCES resource utilized, the statistics

output, and anything else which may vary between executions.
b) Runs: Within the GEM5ART library, a run object

is a special artifact which contains all the information, and

references all the main artifacts, required to execute a single

gem5 experiment.
c) Tasks: A task is a gem5 job. Tasks are generated from

the run objects and execute using an external job scheduler

(e.g. Celery [10]) or a process management library (e.g.

Python multiprocessing library).

Overall, GEM5ART interacts with the following exter-

nal components: Celery [10], a job scheduler; Python
multiprocessing library, a simpler task management li-

brary; MongoDB [11], a NoSQL database we use to store

gem5 run information and their corresponding artifacts; and

Packer [12], a tool to automate the process of disk creation.

Figure 2 depicts how a user would interact with GEM5ART

to run their experiment. The user first registers all artifacts

using GEM5ART (1), any associated files are stored in the

database as well (2). The GEM5ART run objects are then

created using GEM5ART run library (3), passed to GEM5ART

tasks library (4) and executed using an external task manager

(5). Finally, results are stored in the database as well (6 and

7). The user can query the database at any time to access

artifacts and results (8).

B. Artifacts

The first stage of a user interacting with GEM5ART is via

the artifact module. Through this module, the user registers

the created artifacts of all the components needed to run

an experiment. Since, some artifacts serve as input to other

artifacts (for example, Linux kernel source repository artifact

is an input to the Linux kernel binary artifact), the artifact
module is also used to declare the dependencies that exist

among different artifacts. Figure 3 shows an example of how

a user can register a gem5 binary as an artifact. In this example

six attributes are specified:

• command: The command which must be executed to

create the resource. In this case, the gem5 binary. Note

the checkout at a specific revision. This ensures anyone

else using this artifact will obtain the the correct version

of gem5,

185

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

gem5_binary = Artifact.registerArtifact(
command = '''cd gem5;
git checkout 440 f0bc579fb8b10da7181;
scons build/X86/gem5.opt -j8
''',
typ = 'gem5 binary ',
name = 'gem5',
cwd = 'gem5/'
path = 'gem5/build/X86/gem5.opt',
inputs = [gem5_repo ,],
documentation = 'gem5 binary ...')

Fig. 3: Example registration of an Artifact

• typ: The artifact type. In this case, a gem5 binary.

• name: The name of the resource.

• cwd: The directory in which the command should be

run.

• path: The path of the artifact (gem5 binary).

• inputs: Other resources dependency. In this example, the

gem5 repository artifact must already be present before

the gem5 binary artifact may be obtained.

• documentation: The artifact’s documentation to store any

user specified useful information about the artifact.

These attributes are mainly used for documentation purposes

and should provide enough information to reproduce the

experiment at a later time. Via the GEM5ART artifacts library,

this information is uploaded to the database, along with the

following which are automatically generated by GEM5ART:

• hash: An MD5 hash of the resources or the git revision

hash if the artifact is a repository.

• id: A unique ID (UUID) generated for each artifact.

• git: A dictionary containing two keys: git url and

hash, which values specify the git repo and the revision

hash of the artifact. If the target attribute is not a git

repository, the dictionary is left blank. As most of the

artifacts used in any gem5 simulation are source code

repositories (version controlled by git), we leverage

git url and hash to indirectly store useful information

about the artifact version. This, in turn, also allows us to

easily communicate the status of an artifact used in an

experiment (via git hash) to others who do not have

access to the user’s database.

These generated attributes are used by the GEM5ART arti-

fact library to maintain a uniqueness of the resource in the

database. The artifact is assumed to be present at the user-

specified path. If there is any file associated with the artifact,

that is stored in the database as well unless it already exists

there. The hash attribute is used as a safety net to ensure a

resource has not been altered between runs. If this changes,

even if all other attributes remain the same, a new artifact is

generated. Duplicate artifacts are not permitted in the database.

This allows a user to see clearly which objects were used in

that gem5 run.

def createFSRun(cls ,
gem5_binary: str ,
run_script: str ,
output: str ,
gem5_artifact: Artifact ,
gem5_git_artifact: Artifact ,
run_script_git_artifact: Artifact ,
linux_binary: str ,
disk_image: str ,
linux_binary_artifact: Artifact ,
dist_image_artifact: Artifact ,
*params: str ,
timeout: int = 60*15) -> 'gem5Run ':

Fig. 4: GEM5ART run method for full-system simulation

C. Runs

Once the artifacts have been specified, the user then cre-

ates the run objects using the GEM5ART run library. The

“GEM5ART run” object is a special artifact which stores all

the information about a run and a pointer to its results. The

“GEM5ART run” also references the GEM5ART artifacts used

in a gem5 run.

Figure 4 shows an example of a function, provided by the

run library to create a gem5 full-system run object. To run a

full-system simulation the user must provide a gem5 binary, a

kernel, a disk image, and a gem5 run script. These are all pro-

vided as parameters to the createFSRun method, so that the

eventual gem5 run command can be constructed and executed

by GEM5ART. The previously registered artifacts needed for

the gem5 run are passed to this function as well. For instance,

gem5_artifact for the gem5 binary, gem5_git_artifact
for its repository, run_script_git_artifact for the gem5

run script, linux_binary_artifact for the Linux kernel

binary, and disk_image_artifact for the disk image as

shown in Figure 4. Any other arguments needed for the gem5

run script are passed as parameters to the function in Figure 4,

and a timeout is provided (after which the gem5 job is termi-

nated by GEM5ART if not already finished). gem5_binary,
run_script, linux_binary, and disk_image in Figure 4

specify the location of each artifact in the host system, and

output specifies the output directory. It should be noted

that all of this information fed to the createFSRun method

specifies one unique experiment (a single data point).

The results of an experiment are archived as an artifact

inside the database instance. GEM5ART also stores a summary

of useful information (like run status and execution time) in

the database. The database can then be queried to access this

information, and generate plots to visualize results for further

analysis. Additionally, by tracking all of the artifacts used

for each gem5 execution, any resources (disk images, kernels,

results, etc.) related to a particular gem5 run can be recovered

for reproduction purposes.

D. Executing Tasks

The run object, such as that created via the createFSRun
function in Figure 4, is then passed to the GEM5ART

186

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

gem5_git_repo = registerArtifact('gem5/')
gem5_binary = registerArtifact(

gem5_git_repo ,
'build/X86/gem5.opt')

linux_git_repo = registerArtifact(
'linux -stable/')

vmlinux_binary = registerArtifact(
linux_git_repo ,
'linux -stable/vmlinux ')

parsec_repo = registerArtifact(
'parsec/')

disk_image = registerArtifact(
parsec_repo ,
'disks/parsec.img')

function main ():
cpus = ['kvm', 'simple ']
benchmarks = ['blackscholes ', ...]
...
for each combination P\

in [cpus , benchmarks , ...]:
run_object = gem5Run.createFSRun(

artifacts , P)
apply_async(run_object)

Fig. 5: A typical GEM5ART full-system experiment involves

gem5 artifacts, Linux kernel artifacts, disk image artifacts,

and the experiment artifacts. After declaring the artifacts, the

main function asynchronously launches the cross product of

all parameters.

tasks library. This library uses Celery, or python
multiprocessing library, or no job scheduler at all, to

run a gem5 job. There is no limit to how many tasks

may be passed to Celery or the python multiprocessing
library. They will run the tasks in accordance to the job

objects given, and schedule them as the host system allows.

Celery is more complicated (but feature rich) job manager

in comparison to the python multiprocessing library and

may be used to manage tasks over multiple machines if

needed. The GEM5ART task package can be extended to other

job schedulers and distributed computing environments (e.g.,

Condor) in the future.

E. An end-to-end example

The entire user interaction with GEM5ART takes place via

Python scripts called launch scripts. Figure 5 provides an

example of such a script.

This example launch script is responsible for run-

ning PARSEC benchmarks using different gem5 configu-

rations. The first portion of this script registers all the

artifacts needed to run PARSEC experiments in this ex-

ample gem5_git_repo, gem5_binary, linux_git_repo,
vmlinux_binary, parsec_repo, and the disk_image. In

the second portion of this script (inside the main() function),

the GEM5ART run objects are created for each combination of

a PARSEC benchmark and a gem5 configuration (for example

different CPU models). These runs are setup to be executed

asynchronously in the last 3 lines of this script.

Through this one Python script, the entire experiment and

the details required to run the experiment are documented in

one place. This script, in addition to the database, can be used

to communicate to others (e.g., in a reproducibility report) all

necessary inputs, how they were obtained, and how they were

run for a particular experiment.

V. GEM5 RESOURCES

A key contribution of this work is providing a set of known-

good resources for simulating workloads. While GEM5ART

will keep track of artifacts for a particular run of gem5,

there is the question of where someone using gem5 obtains

these artifacts. For example, to evaluate the performance of

a new and novel architectural design, a researcher will likely

use a benchmark suite for evaluation. Previously it was the

responsibility of the researcher to obtain for themselves this

benchmark suite (and whatever else they required).

GEM5 RESOURCES5 contains components which are not

strictly needed to build and run gem5 but may be utilized in the

running of a gem5 simulation. At present, GEM5 RESOURCES

contains disk images pre-loaded with commonly used bench-

mark suites, scripts to run these benchmarks, kernels, and

tests. GEM5 RESOURCES is under continual development and

expansion, and will remain compatible with the latest gem5

changes. Table I contains a list of the resources presently

available in GEM5 RESOURCES. We demonstrate using a

selection of these resources in Section VI.

Each resources in GEM5 RESOURCES provides the original

source code so researchers can understand how each was

constructed and reproduce the pre-build resource if required.

In keeping with gem5’s free and open-source ethos, these

resources may be modified to meet the needs of experimenters.

We also encourage contributions of new benchmarks, useful

tests, etc. to help expand the set of gem5 compatible materials

which may be useful to others.

When providing a disk image GEM5 RESOURCES utilizes

Packer6. Packer is an open-source disk image building tool

available on most modern desktop operating systems to build

disk images for various Linux distributions. Packer is capable

of automating the disk image building process given necessary

inputs. For each provided disk image GEM5 RESOURCES pro-

vides such inputs: the corresponding Packer script, a Ubuntu

preseed configuration, a benchmark installation script and

other resources required for building the desired benchmarks.

The Packer scripts do not only provide necessary documen-

tation to reproduce the disk image, but they also serve as

a simple template to facilitate the contributions of new full

system benchmarks.

For proprietary benchmarks, we don’t distribute the disk

images, but we do distribute all of the scripts needed to build

the disk images. For instance, if the user has a SPEC license

with a disk image (.iso) file they can execute the scripts

provided by GEM5 RESOURCES and the disk image will be

created.

5https://gem5.googlesource.com/public/gem5-resources
6https://www.packer.io

187

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The GEM5 RESOURCES

Name Type Description
boot-exit Benchmark / Test A collection of gem5 scripts and binaries capable of completing and exiting the booting process of a Linux

kernel with a Ubuntu 18.04 Server user-land with gem5 full system mode (FS mode). The documentation
details the creation process of the Linux kernel and the disk image, as well as providing pre-made binaries.
This resource serves as a test suite for gem5 FS mode.

gapbs Benchmark A collection of gem5 scripts, binaries, and documentation that are capable of running GAP Benchmark
Suite (GABPS) with a Linux kernel and a Ubuntu 18.04 Server user-land with gem5 full system mode.
This resource also details the creation process of the Linux kernel and the disk image, as well as providing
pre-made binaries.

hack-back Benchmark A collection of gem5 scripts and binaries capable of creating a checkpoint after the booting process and
then executing a script provided by the host in a gem5 full system simulation. The documentation details the
creation process of the Linux kernel and the disk image containing a Ubuntu 18.04 Server user-land, as well
as providing pre-made binaries.

linux-kernel Kernel A set of Linux kernel configurations and documentation of compiling a Linux kernel.
npb Benchmark A collection of gem5 scripts, binaries, and documentation that are capable of running NAS Parallel Benchmark

(NPB) with a Linux kernel and a Ubuntu 18.04 Server user-land with gem5 full system mode. The
documentation details the creation process of the Linux kernel and the disk image, as well as providing
pre-made binaries.

parsec Benchmark A collection of gem5 scripts, binaries, and documentation that are capable of running Princeton Application
Repository for Shared-Memory Computers (PARSEC) benchmark suite with a Linux kernel and a Ubuntu
18.04 Server user-land with gem5 full system mode. The documentation details the creation process of the
Linux kernel and the disk image, as well as providing pre-made binaries.

riscv-fs Test A collection of gem5 scripts, and documentation to build riscv bbl (berkeley boot loader) with linux kernel
payload and a disk image to run full system simulation for a riscv target.

spec-2006 Benchmark A collection of gem5 scripts, binaries, and documentation that are capable of running SPEC CPU 2006
benchmark suite with a Linux kernel and a Ubuntu 18.04 Server user-land with gem5 full system mode. The
documentation details the creation process of the Linux kernel and the disk image. Licensing forbids us from
providing pre-made disk images.

spec-2017 Benchmark A collection of gem5 scripts, binaries, and documentation that are capable of running SPEC CPU 2017
benchmark suite with a Linux kernel and a Ubuntu 18.04 Server user-land with gem5 full system mode. The
documentation details the creation process of the Linux kernel and the disk image. Licensing forbids us from
providing pre-made disk images.

GCN-docker Environment A docker image with ROCm 1.6 and GCC 5.4 installed to simulate GPU applications on AMD GCN3
simulated GPUs. These applications include workloads such as DNNMark, HACC, HIP sample applications,
HeteroSync, LULESH, and PENNANT. This docker image is used to build and run the GCN3_X86 gem5
variant.

HeteroSync [13] Benchmark A benchmark suite used to test the performance of various types of fine-grained synchronizations on tightly-
coupled GPUs. This resource works with the GCN3_X86 gem5 variant.

DNNMark [14] Benchmark A benchmark framework used to characterize the performance of primitive deep neutral network workloads.
This resource works with the GCN3_X86 gem5 variant.

halo-finder [15] Application Part of the HACC code base, a DoE application designed to simulate the evolution of the universe. The
halo-finder code can be GPU accelerated. This resource works with the GCN3_X86 gem5 variant.

Pennant [16] Application A GPU application designed for advanced architecture research. This resource works with the GCN3_X86
gem5 variant.

LULESH [17], [18] Application A DOE proxy application that is used as an example of hydrodynamics modeling. This resource works with
the GCN3_X86 gem5 variant.

hip-samples Application A set of applications that introduce various GPU programming concepts usable in ROCm HIP. This resource
works with the GCN3_X86 gem5 variant.

gem5 tests Test asmtest: a collection of RISC-V tests for instructions and syscalls. insttest: tests for SPARC instructions.
riscv-tests: RISC-V processor unit tests. simple: tests for m5ops and ARM semi-hosting. square: test for
squaring a vector of floats on AMD GPU.

In an ongoing effort to improve the gem5 framework, we

provide a working status of the GEM5 RESOURCES on gem5

releases at http://resources.gem5.org.

A. Environment Resources

As an example of how GEM5 RESOURCES can be used to

ease the burden end-users face when setting up simulations,

we look at simulating GPUs. One of the gem5 GPU models

is based on AMD’s GCN3 architecture [19], [20]. In order

for users to compile and run GPU applications on this GPU

model, they must have the proper ROCm stack (version 1.6)

installed [21]. Moreover, the libraries are also needed to in-

terface with the kernel-space driver, which is emulated within

gem5. Installing these libraries correctly is difficult: even with

existing documents explaining what should be installed, there

are many posts on the gem5 forum from frustrated users unable

to get things installed properly.

Due to this complexity, we created a Docker image as part

of GEM5 RESOURCES which automatically sets up the correct

environment to build and run GPU applications on the simu-

lated AMD GPU [22]. This Docker image completely removes

the frustration of trying to correctly setup the environment on

a host machine. Instead, users who want to run their GPU

application in gem5 can simply pull the image and run it with

no setup required. In GEM5 RESOURCES we also provide a

dockerfile that can serve as step-by-step instructions for users

who want to install the libraries on their machine to avoid any

188

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

docker overheads, or as a starting point for users who want to

modify the libraries as part of their GPU experiments. Thus,

thanks to GEM5 RESOURCES, users can easily compile GPU

applications and simulate them within gem5.

Additionally, in GEM5 RESOURCES we provide a wide

range of GPU applications, from HIP sample applications [23]

which showcase various GPU features and primitives, to Het-

eroSync [13], an open-source GPU synchronization primitives

library, to DNNMark [14], a benchmark suite with various

DNN layers, as well as DOE Proxy Applications such as

HACC [15], LULESH [18], [17], and PENNANT [16].

VI. USE CASES

To demonstrate the usefulness of GEM5ART and GEM5

RESOURCES we demonstrate three resources. First, we show

the impact of using up-to-date resources with the PARSEC

benchmark suite. We show that when used with Ubuntu 18.04

(released in April of 2018) and Ubuntu 20.04 (released two

years later in April 2020) there are differences in the simulated

results. Second, we demonstrate that GEM5ART enables large

cross-product studies by running “Linux boot tests” for a

variety of systems and Linux kernel versions. Finally, we show

how register allocation scheme affects the performance of a

GPU applications, and identify future GPU model contribution

opportunities.

To run these use cases and other work for this paper, we

used GEM5ART and stored all results in a centralized database.

We provide a complete archive of the experiment data and

scripts at https://doi.org/10.6084/m9.figshare.14176802.

A. Use-Case 1: PARSEC

The PARSEC [4] is a popular benchmark suite composed

of multi-threaded applications. The suite contains 13 appli-

cations, each of which focus on a particular problem domain

such as image processing or option pricing. In this use-case we

envisioned a scenario where a researcher wishes to observe the

performance of the PARSEC benchmark suite across different

LTS Ubuntu OS releases. We settled on evaluating the two

latest LTS released, Ubuntu 18.04 and 20.4. Table II details the

system under simulation. Due to runtime issues in the x264,
facesim and canneal applications, they have been removed

from our analysis. We ran these problematic workloads in

QEMU instead of gem5 and found they experienced similar

errors as when they ran in gem5. Thus, we conclude that there

are bugs with the benchmarks themselves. By enabling the

simple reproduction and use of these workloads in an open-

source manner, we hope that others who use these workloads

will contribute fixes which can be used by the rest of the

community.

To run the 10 remaining applications in the PARSEC bench-

mark suite, we executed a series of full system simulations.

To do so we used the GEM5ART createFSRun method, as

outlined in Figure 4. The gem5_git_artifact was set to

the gem5 git source repository7, version 20.1.0.4, with the

7https://gem5.googlesource.com/public/gem5.

TABLE II: Configuration Parameters for Use-Case 1

Component Options
CPU TimingSimpleCPU
Number of CPUs 1, 2, 8
Memory 1 channel, DDR3_1600_8x8
OS Ubuntu 20.04 (kernel version: 5.4.51),

Ubuntu 18.04 (kernel version: 4.15.18)
Workloads Blackscholes, Bodytrack, Dedup, Ferret, Flu-

idanimate, Freqmine, Raytrace, Streamcluster,
Swaptions, Vips

Input sizes simmedium

gem5_artifact as a gem5 binary compiled from the source

using the GCC 7.5 compiler. The dist_image_artifact
varies between an image of the PARSEC benchmark suite

running atop Ubuntu 18.04, and another with PARSEC bench-

mark suite running atop Ubuntu 20.04; both available as part

of GEM5 RESOURCES [24]. All the artifacts used in this series

of runs are available from GEM5 RESOURCES.

We used the Linux v4.15.18 kernel for Ubuntu

18.04 and the v5.4.51 kernel for Ubuntu 20.04, as the

linux_binary_artifact. These, again, are available from

GEM5 RESOURCES [25]. Finally, we use the run script from

the PARSEC benchmark suite resource [24]. This script takes

in the disk image, the kernel, the CPU type, the number of

CPUs, the PARSEC application to run, and the application

input as parameters. In our experiments we run using the

TimingSimpleCPU, with 10 parsec applications, utilizing the

SimMedium inputs, using both a single CPU, 2 CPUs, and 8

CPUs.

Though this setup, at a surface level, seems like a basic

experiment, there are a lot of runs and components to keep

track of. Using two OS’s (each with a different kernel), 10

applications, run on a single CPU, 2 CPUs, and again on

8 CPU simulation, gives a cross product of 60 gem5 runs.

Though, using GEM5ART, we only needed to outline the

artifacts then execute the run functions. The job scheduler then

runs gem5, with all the results and artifacts stored carefully

in the database.

To improve the extracting of data from our MongoDB

instance, we created a Jupyter Notebook instance [26], to

analyze data and automatically created graphs using Python’s

Matplotlib library [27].

Figure 6 was generated from the database. The graph

shows the absolute execution time difference of each PARSEC

benchmark suite application in 20.04, compared to Ubuntu

18.04, for 1, 2, and 8 cores. The applications typically take

longer to execute in Ubuntu 18.04, though the difference

becomes less so as more CPU cores are utilized. We found

upon further analysis that PARSEC running in Ubuntu 20.04

was executing significantly more instructions, but at a higher

CPU utilization rate. We suspect the reason for this is Ubuntu

20.04 coming bundled with a different, newer version of GCC

(version 9.3 in contract to Ubuntu 18.04’s 7.4). Differences

arising form using different Linux kernels in Ubuntu 20.04

18.04 could also be playing a role.

Figure 7 shows the rate of speed-up of using 8 CPUS for the

189

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: The absolute execution time difference of the PARSEC

benchmark suite in Ubuntu 18.04, compared to Ubuntu 20.04.

Fig. 7: The PARSEC suite execution time speedup between 1

and 8 cores across Ubuntu 18.04 and Ubuntu 20.04.

PARSEC workloads compared to using 1 CPU as a baseline,

on both Ubuntu 18.04 and 20.04. The data shows that the

rate of speedup is relatively consistent between the two OSs,

though, on average Ubuntu 20.04 achieves a greater speedup

particularly in the case of blackscholes and ferret. This
suggests the Ubuntu 20.04 disk image is achieving greater

CPU utilization.

Using GEM5ART and GEM5 RESOURCES, this experiment

was trivial to setup, ran automatically, and stored the results

in a database to query and visualize later. If required, this

experiment may be run again, or with slightly altered parame-

ters, quickly and easily. Furthermore, we are free to make this

database publicly available for others to analyze and reproduce

our results as they see fit.

B. Use-Case 2: Linux Boot Tests

As our second use-case study, we carry out Linux boot

checks. Checking the Linux kernel boots for a particular

architecture design is a standard procedure. Historically, the

state of support of the latest Linux kernel versions on gem5

has remained hard to discover, and has led researchers to use

archaic Linux kernel versions for their evaluations. The test

inevitably validates many components due to the complexity

of modern OSes, and is normally a “must have” check for

many designs. In this use-case, we outline a scenario of

testing a simple configuration cross five different variables.

In essence, we are testing gem5’s viability at booting Linux

under certain configurations. The variables are CPU count,

CPU type, memory system, Linux kernel, and boot type (more

details in Figure 8). The boot-exit disk image resource,

comes with a simple gem5 run script [28] which we utilize

for this work.

Testing the complex cross product of all these options, under

most circumstances, would be a daunting prospect. There are

480 different runs of gem5 to obtain and keep track of. As can

be imagined, the room for mistakes and confusion is large.

A single misconfigured run, exposing a “bug” which does

not exist, could result in considerable misplaced engineering

effort. It is for this reason GEM5ART was developed.

As with any other usage of GEM5ART, we simply needed

to specify all the artifacts needed for these experiments in

a GEM5ART launch script. In this case, the gem5 binary

(v20.1.0.4) and repository, the boot-exit disk image, the linux

kernels, and the gem5 run script are the artifacts. The appro-

priate run methods are then called in the GEM5ART launch

script, with the correct artifacts, and the parameters to be

passed to the gem5 run script (the Memory System, CPU Type,

Number of CPUs, and the Boot Type). Though a considerable

workload, each gem5 run can function independently, meaning

parallelization is possible. The external job scheduler interacts

with GEM5ART and completely automates this task.

Figure 8 shows the results of these gem5 runs using

GEM5ART. The out-of-order CPU, and the TimingSimpleCPU

cannot handle more than one core when running on the

Classic memory system, and the AtomicTimingCPU cannot

function on the Ruby memory system as of gem5 v20.1.0.4.

For the remainder of the data, kvmCPU works in all cases.

AtomicSimpleCPU works in all supported cases i.e., with

Classic memory system. TimingSimpleCPU also works for

all supported cases i.e., except more than 1 CPU for Classic

memory system.

As shown in Figure 8, O3CPU runs have mixed results

with approximately 40% of them running successfully. For

O3CPU, there are 27 cases where the kernel went into panic

during simulation and 31 cases where gem5 failed to simulate

Linux boot because of other reasons. Out of these 31 cases,

gem5 crashes because of a segmentation fault in 11 cases (the

issue has been recorded on the gem5 bug tracking tool8).

gem5 crashes in 4 cases because of a “possible deadlock

detected" error (all in MI_example runs). For the rest of the

O3CPU runs, gem5 fails to finish successfully in a reasonable

amount of time (24 hours, most successful runs finish in a

12 hour timeout) without any explicit errors. These are all

likely bugs within gem5; however, GEM5ART will give the

gem5 developers a useful tool to help effectively direct their

debugging efforts.

C. Use-Case 3: GPUs

As a third use case, we illustrate using gem55 and GEM5

RESOURCES to investigate GPU architecture design-space

analysis on a variety of workloads. For modern GPUs, register

8https://gem5.atlassian.net/browse/GEM5-782.

190

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Results from testing a cross product of kernels, CPU models, memory systems, and CPU cores. The top plots show

the results when booting only the Linux kernel. The bottom plots show results when booting to runlevel 5 (multi-user) in

Ubuntu. CPU Type: kvmCPU (simulates code using hosts’ hardware), AtomicSimpleCPU (uses atomic memory accesses and

no timing simulation), TimingSimpleCPU (uses timing simulation only for memory accesses), O3CPU (an out-of-order CPU,

uses timing for both CPU and memory). Memory System: Classic (fast but lacks coherence fidelity), Ruby (slower but models

detailed memory with cache coherence flexibility; MI_Example and MESI_Two_Level are used in this experiment). Linux
Kernel: five different LTS (long term support) Linux kernels.

Fig. 9: The speedup of the gem5 GCN3 GPU model using simple and dynamic register allocators, normalized to the simple

register allocator.

TABLE III: Key Configuration Parameters for Use-Case 3

Component Value
Number of CUs 4
SIMD16s (vector ALUs) 4 per CU
GPU Frequency 1 GHz
Max Wavefronts 10 per SIMD16 (40 per CU)
Vector Registers 8K per CU
Scalar Registers 8K per CU
LDS 64 KB per CU
L1 instruction cache 32 KB shared between every 4 CUs
L1 data caches (1 per CU) 16 KB per CU
Unified L2 cache 256 KB
Main Memory 1 channel, DDR3_1600_8x8

usage is often a critical component that must be tuned properly

to enable high performance [35], [36]. Thus, examining ways

to tune GPU register allocation can significantly affect an ap-

plication’s performance [37], [38]. To examine how gem55 and

GEM5 RESOURCES enables rapid study of GPU configurations,

we study how GPU performance varies for the two available

GPU register allocation schemes: a simple allocation scheme

that allocates 1 wavefront per SIMD16 [19] in a compute

unit (CU) at a time to limit stalls and a dynamic allocation

scheme that always allows up to the max wavefronts per CU

at a time by monitoring per wavefront register requirements

compared to the number of available registers per CU. In

theory, the dynamic scheme should outperform the simple

one when there are more work groups (WGs) than can be

scheduled initially,9 because it enables this additional work

to be overlapped. However, GPUs have very simple pipelines

with limited mechanisms for tracking dependencies [20]; thus

this additional parallelism may cause additional stalls that hurt

performance. Table III details the other key system parameters

for our simulated system, which models a tightly coupled

CPU-GPU system with coherent caches and a unified address

space.

We evaluate the simple and dynamic register allocation

policies across a number of GPU workloads, all of which are

9WGs contain one or more wavefronts, each of which has up to 64 threads.

191

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Benchmarks & Input Sizes for Use-Case 3 (WG

= Work Groups, CU = Compute Units, CS = critical section).

Application Input Size
2dshfl [23], [29] 4x4
dynamic_shared [23], [29] 16x16
inline_asm [23], [29] 1024x1024
MatrixTranspose [23], [29] 1024x1024
sharedMemory [23], [29] 64x64
shfl [23], [29] 4x4
stream [23], [29] 32x32
unroll [23], [29] 4x4
SpinMutexEBO [13], [30]

10 Ld/St/thr/CS,
8 WGs/CU, 2 iters

FAMutex [13], [30]
SleepMutex [13], [30]
SpinMutexEBOUniq [13], [30]
FAMutexUniq [13], [30]
SleepMutexUniq [13], [30]
LFTreeBarrUniq [13], [30] 10 Ld/St/thr/barrier,

8 WGs/CU, 2 itersLFTreeBarrUniqLocalExch [13], [30]
bwd_bypass [14], [31] NCHW = 100, 1000, 1, 1
bwd_bn [14], [31] NCHW = 100, 1000, 1, 1
bwd_composed_model [14], [31] NCHW = 32, 32, 3, 1
bwd_pool [14], [31] NCHW = 100, 3, 256, 256
bwd_softmax [14], [31] NCHW = 100, 1000, 1, 1
fwd_bypass [14], [31] NCHW = 100, 1000, 1, 1
fwd_bn [14], [31] NCHW = 100, 1000, 1, 1
fwd_composed_model [14], [31] NCHW = 32, 32, 3, 1
fwd_pool [14], [31] NCHW = 100, 3, 256, 256
fwd_softmax [14], [31] NCHW = 100, 1000, 1, 1
HACC [15], [32] (forceTreeTest) 0.5 0.1 64 0.1 100 N 12 rcb
LULESH [18], [17], [33] 1 iteration
PENNANT [16], [34] noh

available in GEM5 RESOURCES. For the DNNMark applica-

tions and PENNANT GEM5 RESOURCES includes input files.

Table IV summarizes these applications and their input sizes.

The applications represent a number of different use cases and

application sizes, and thus provide a wide set of data points to

evaluate the efficacy of the register allocators. All applications

run on AMD ROCm 1.6, and use the corresponding HIP,

MIOpen, and rocBLAS library versions. Moreover, for all

applications we utilize our docker support that automatically

builds the correct ROCm stack (Section V-A). Thus, to conduct

similar experiments, a researcher would need to checkout the

appropriate version of gem5 (gem5 v21.0) and the correspond-

ing GEM5 RESOURCES, compile gem5 with the GCN3_X86

configuration, compile GEM5 RESOURCES or download them,

and then run each application using our docker, the same sys-

tem configuration (Table III), and the same inputs (Table IV).

Figure 9 shows how the GPU execution time (in shader

ticks) varies for the simple and dynamic register allocation

policies. Surprisingly, overall the dynamic register allocator is

actually outperformed by the simple register allocator: on av-

erage the simple register allocator improves GPU performance

by 8% compared to the dynamic register allocator. The largest

contributor to this surprising result is the overly simplistic

dependence tracking information in the publicly available GPU

model. The HeteroSync applications, bwd_pool, and fwd_pool

in particular suffer (e.g., the dynamic register allocator is 61%

and 22% worse for FAMutex and fwd_pool, respectively). This

highlights how optimizing the register allocator in isolation is

insufficient, and how future contributions to gem5 that improve

the dependence tracking could pay significant dividends. By

enabling a broad variety of workloads, we were able quickly

and easily find the modeling inaccuracies in gem55.

Other applications with small kernels (e.g., 2dshfl, dy-

namic_shared) or limited additional work to schedule (e.g.,

HACC and LULESH) are less affected by running more

wavefronts per CU. Thus, they show little or no difference

between the register allocators. However, the remaining ap-

plications (inline_asm, MatrixTransponse, PENNANT, stream,

and some of the DNNMark ML layers) having a dynamic

register allocator significantly improves performance. Unlike

the other applications, these applications have more work than

can be scheduled initially, fully utilize the GPU, or are very

compute intensive. Thus, the dynamic register allocator allows

them to overlap additional computation and helps hide the

latency of accessing memory. More broadly, this work shows

how GPU researchers can easily configure and utilize our work

to examine other interesting research questions.

VII. CONCLUSIONS AND POTENTIAL IMPACT

GEM5ART and GEM5 RESOURCES will enable novel com-

puter architecture research. With these tools, computer ar-

chitecture researchers will be able to concentrate on novel

computer architecture designs instead of wasting time getting

the simulation framework up and running.

We will be releasing both GEM5ART and GEM5 RESOURCES

as open source community-driven projects and encourage the

entire computer architecture community to contribute new

resources and we will host them in a centralized repository

for the rest of the community to use. As the gem5 project

continues to improve and adapt to meet the demands of

researchers, so will our framework. The new framework here,

GEM5ART is he latest addition to the project, and we hope,

will bring great benefits to the community.

Using the GEM5ART framework, we could potentially even

host simulation results from the broader computer architecture

community in a centralized repository. With a consistent

schema for representing both inputs and output of simulations,

this repository would significantly improve the reproducibility

of computer architecture research.

REFERENCES

[1] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti et al., “The gem5
simulator,” ACM SIGARCH computer architecture news, vol. 39, no. 2,
pp. 1–7, 2011.

[2] J. Lowe-Power et al., “The gem5 Simulator: Version 20.0+,” 2020.
[3] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for

computer system modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.
[4] C. Bienia, “Benchmarking Modern Multiprocessors,” Ph.D. dissertation,

Princeton University, January 2011.
[5] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, and C. Fetzer, “Fex: A software

systems evaluator,” in Proceedings of the 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks — DSN
’17. IEEE, 2017, pp. 543–550.

[6] L. Oliveira, D. Wilkinson, D. Mossé, and B. R. Childers, “Occam: Soft-
ware environment for creating reproducible research,” in Proccedings of
the IEEE 14th International Conference on e-Science — e-Science ’18.
IEEE, 2018, pp. 394–395.

[7] “Collective Knowledge,” Accessed 2020-10-30. [Online]. Available:
https://cknowledge.org/

192

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

[8] M. Walker, S. Bischoff, S. Diestelhorst, G. Merrett, and B. Al-Hashimi,
“Hardware-Validated CPU Performance and Energy Modelling,” in
Proceedings of the 2018 IEEE International Symposium on Performance
Analysis of Systems and Software — ISPASS ’18. IEEE, 2018, pp. 44–
53.

[9] J.-E. Jo, G.-H. Lee, H. Jang, J. Lee, M. Ajdari, and J. Kim, “DiagSim:
Systematically diagnosing simulators for healthy simulations,” ACM
Transactions on Architecture and Code Optimization — TACO ’18,
vol. 15, no. 1, pp. 1–27, 2018.

[10] “The celery project,” Accessed 2020-10-26. [Online]. Available:
https://docs.celeryproject.org

[11] “MongoDB,” Accessed 2020-10-26. [Online]. Available: https://www.
mongodb.com

[12] “Packer,” Accessed 2020-10-26. [Online]. Available: https://www.
packer.io

[13] M. D. Sinclair, J. Alsop, and S. V. Adve, “HeteroSync: A bench-
mark suite for fine-grained synchronization on tightly coupled gpus,”
in Proccedings of the IEEE International Symposium on Workload
Characterization — IISWC ’17. IEEE, 2017, pp. 239–249.

[14] S. Dong and D. Kaeli, “DNNMark: A deep neural network benchmark
suite for gpus,” in Proceedings of the General Purpose GPUs, 2017, pp.
63–72.

[15] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka et al., “HACC: Simulat-
ing sky surveys on state-of-the-art supercomputing architectures,” New
Astronomy, vol. 42, pp. 49–65, 2016.

[16] C. R. Ferenbaugh, “PENNANT: An unstructured mesh mini-app for ad-
vanced architecture research,” Concurrency and Computation: Practice
and Experience, vol. 27, no. 17, pp. 4555–4572, 2015.

[17] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito,
M. Gokhale, R. Haque, R. Hornung, J. Keasler, D. Laney, E. Luke,
S. Lloyd, J. McGraw, R. Neely, D. Richards, M. Schulz, C. H. Still,
F. Wang, and D. Wong, “LULESH Programming Model and Perfor-
mance Ports Overview,” Lawrence Livermore National Labs, Tech. Rep.
LLNL-TR-608824, December 2012.

[18] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz,
and C. Still, “Exploring traditional and emerging parallel programming
models using a proxy application,” in 27th IEEE International Parallel &
Distributed Processing Symposium (IEEE IPDPS 2013), Boston, USA,
May 2013.

[19] “Graphics Core Next Architecture, Generation 3,” Accessed 2020-
10-30. [Online]. Available: http://developer.amd.com/wordpress/media/
2013/12/AMD_GCN3_Instruction_Set_Architecture_rev1.1.pdf

[20] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D.
Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language
Level,” in Proceedings of the 24th IEEE International Symposium on
High Performance Computer Architecture — HPCA ’21, ser. HPCA,
2018, pp. 608–619.

[21] “ROCm Device Libraries,” Accessed 2020-10-30. [Online]. Available:
https://github.com/RadeonOpenCompute/ROCm-Device-Libs

[22] “gem5 Resources. Resource: GNC3 GPU Docker,”
git repository at revision ’2a4357b’. [On-
line]. Available: https://gem5.googlesource.com/public/gem5/+/
2a4357bfd0c688a19cfd6b1c600bb2d2d6fa6151/util/dockerfiles/gcn-gpu

[23] AMD, “HIP Sample Apps,” 2020. [Online]. Available: https://github.
com/ROCm-Developer-Tools/HIP/tree/master/samples/2_Cookbook

[24] “gem5 Resources. Resource: PARSEC,” git repository at revision
’31924b6’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/c5f5c70d0291e105444f534cf538ea40e4ddcb96/src/
parsec

[25] “gem5 Resources. Resource: linux-kernel,” git repository at revision
’c5f5c70’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/c5f5c70d0291e105444f534cf538ea40e4ddcb96/src/
linux-kernel

[26] “Project Jupyter,” Accessed 2020-10-19. [Online]. Available: https:
//jupyter.org/

[27] “Matplotlib,” Accessed 2020-10-28. [Online]. Available: https://
matplotlib.org

[28] “gem5 Resources. Resource: boot-exit run script,”
git repository at revision ’c5f5c70’. [Online].

Available: https://gem5.googlesource.com/public/gem5-resources/+/
c5f5c70d0291e105444f534cf538ea40e4ddcb96/src/boot-exit/configs

[29] “gem5 Resources. Resource: HIP Samples,” git
repository at revision ’8a8193a’. [Online]. Avail-
able: https://gem5.googlesource.com/public/gem5-resources/+/
8a8193a69075b7baa1db438a41ef56a6bf2d4d5b/src/hip-samples

[30] “gem5 Resources. Resource: HeteroSync,” git repository at revision
’8a8193a’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/8a8193a69075b7baa1db438a41ef56a6bf2d4d5b/src/
heterosync

[31] “gem5 Resources. Resource: DNNMark,” git repository at revision
’8a8193a’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/8a8193a69075b7baa1db438a41ef56a6bf2d4d5b/src/
DNNMark

[32] “gem5 Resources. Resource: Halo-Finder,” git repository at revision
’8a8193a’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/8a8193a69075b7baa1db438a41ef56a6bf2d4d5b/src/
halo-finder

[33] “gem5 Resources. Resource: LULESH,” git repository at revision
’8a8193a’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/8a8193a69075b7baa1db438a41ef56a6bf2d4d5b/src/
lulesh

[34] “gem5 Resources. Resource: PENNANT,” git repository at revision
’9dda943’. [Online]. Available: https://gem5.googlesource.com/public/
gem5-resources/+/9dda943b120666fd44b53674a142a747c1e86892/src/
pennant

[35] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J.
Dally, “Unifying primary cache, scratch, and register file memories in
a throughput processor,” in Proceedings of the 45th Annual IEEE/ACM
International Symposium on Microarchitecture — MICRO ’12, 2012, pp.
96–106.

[36] B. Pourghassemi, C. Zhang, J. H. Lee, and A. Chandramowlishwaran,
“On the Limits of Parallelizing Convolutional Neural Networks on
GPUs,” in Proceedings of the 32nd ACM Symposium on Parallelism in
Algorithms and Architectures, ser. SPAA, 2020, p. 567–569. [Online].
Available: https://doi.org/10.1145/3350755.3400266

[37] D. Sampaio, “GPU Divergence: Analysis and Register Allocation,” Tech.
Rep., 2017.

[38] Y. You and S. Chen, “Vector-aware Register Allocation for GPU
Shader Processors,” in Proceedings of the International Conference on
Compilers, Architecture and Synthesis for Embedded Systems — CASES
’15, 2015, pp. 99–108.

193

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on May 10,2021 at 16:51:23 UTC from IEEE Xplore. Restrictions apply.

