
Automatically Exploring Computer System Design Spaces
Bobby R. Bruce
bbruce@ucdavis.edu

University of California, Davis
Davis, California, USA

ABSTRACT
While much research has focused on using search to optimize soft-
ware, it is possible to use these same approaches to optimize other
parts of the computer system. With decreased costs in silicon cus-
tomization, and the return of centralized systems carrying out
specialized tasks, the time is right to begin thinking about tools to
optimize systems for the needs of specific software targets. In the
approach outlined, the standard Genetic Improvement process is
flipped with source code considered static and the remainder of the
computer system altered to the needs of the software. The project
proposed is preliminary research into incorporating grammar-based
GP with an advanced computer architecture simulator to automati-
cally design computer systems. I argue this approach has the poten-
tial to significantly improve the design of computer systems while
reducing manual effort.

CCS CONCEPTS
• Software and its engineering → Search-based software engi-
neering; • Computer systems organization→ Architectures.

KEYWORDS
search, genetic improvement, computer architecture
ACM Reference Format:
Bobby R. Bruce. 2022. Automatically Exploring Computer System Design
Spaces. In Genetic and Evolutionary Computation Conference Companion
(GECCO ’22 Companion), July 9–13, 2022, Boston, MA, USA. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3520304.3534021

1 THE VISION
Source code is a human-readable language for describing the de-
sired functionality of a computer system. Compilers, the operating
system with its kernel and drivers, the ISA, the chips, the micro-
architecture, the logic gates, and everything else, all exist to serve
the needs of what is defined in code. While software engineers
have to occasionally tweak hardware parameters or interface with
low-level with components, the trajectory of software development
has been one of increasing abstraction from the remainder of the
computer system. Software engineers thereby have the privilege
to choose the best computer for the job. This activity creates an
implicit, invisible coordination between those who produce applica-
tions, and those who develop the remainder of the computer system.
The software engineers produce required applications while the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3534021

ecosystem of hardware designers, OS developers, etc. respond by
ensuring the software runs as well as is possible at a tolerable
price-point. In a sense, there is a human-driven evolution of com-
puter systems with software developers providing the necessary
evolutionary pressure.

Unfortunately this process is an expensive, largely human-driven
affair with engineers responsible for carrying out this iterative
evolutionary process. In order to improve this I ask the following
question:With just source code and inputs representative of its usage,
can a optimal computer system be automatically designed?

I believe there are signs that such a goal may be achievable.
Search-based techniques, such as Genetic Improvement [4] (GI),
have shown that software can be optimized for hardware targets.
What I propose is the flipping of this process. Instead of seeing a host
computer system as the fixed entity with software as a malleable
component, why not view software as the definition of a system’s
behavior and modify everything else accordingly?

There are some clear economic incentives to carry out such
research. As an example, a SaaS service provider may run many
instances of the same software for years. It would therefore be
in their interest to ensure the system this software runs is opti-
mally designed; the highest performance for the lowest cost. They
could optimize at many different levels of the computer system.
At the level of silicon they could look into customization options.
While historically bespoke silicon solutions were costly, the costs
of design-to-tapeout has decreased substantially. SiFive go as far as
offering customization of their RISV-V cores via a web-interface [1].
From here they could look into the optimal size and layout of caches
and memory, and the possible inclusion of hardware accelerators.
Moving into the realms of software they can tweak kernel and
wider operating system parameters so the target software performs
as best it can on their bespoke hardware. The compilation of the
input software may also be tweaked to produce machine-level in-
structions optimal for the hardware. Compilation flags and the
order of compiler optimizations can have considerable impact on a
given workload’s performance in a particular environment. Such
design decisions can be made now (and in some cases are) but it
is prohibitively expensive for most use-cases. This leaves many to
pick general purpose solutions and accept poorer performance. I
would hope, with the research outlined, we can reduce the costs
involved in computer system optimization thus making it a more
common endeavor for system designers.

The ultimate end-goal of what I am proposing is a framework
in which software may be written independently of all other con-
siderations with an automated process left to generate the optimal
computer system for it to run. This grand goal is distant and ambi-
tious, but we have the tools now to make headway with each step
on this journey fruitful for computer architects and others who
design computer systems.

https://orcid.org/0000-0001-6070-9722
https://doi.org/10.1145/3520304.3534021
https://doi.org/10.1145/3520304.3534021


GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Bobby R. Bruce

2 FIRST STEPS
What do the grass roots of this end-goal look like? Thus far I have
deliberately used the term “computer system” when discussing
optimization as it is broad and all-encompassing, but we must start
research with something more specific. Computer systems can
be understood from high level interactions between nodes in a
network, all the way down to nano-scale interactions on a wafer.
Surveying the literature we find that work has already been carried
out on the automated generation of electronic circuits [5]. While
this work is worthy of note, working at this scale produces too large
a search space to automatically create functional, modern computer
systems in a reasonable timescale. I thereby propose work start at
the level of computer architecture where we deal with pre-built,
somewhat inter-changeable, components. This approach allows
for large degrees of configurability while utilizing off-the-shelf
components and standardized interfaces.

To optimize these components a search-based approach will
be used. As using search will involve evaluating a vast number
of computer systems to find a suitable solution, we must rely on
simulation tools. Fortunately simulators exist at the computer ar-
chitecture scale; gem5 [2] being the most notable. Therefore, in
the research outlined, a search-based tool will be built atop such a
simulator. The search algorithm will be responsible for producing
a design, and the simulator responsible for producing the fitness
of the design. As a simple first step, this tool will configure broad
properties such as what processor to use, the size and nature of the
cache hierarchy, and the size of the memory system. These proper-
ties will then be optimized with respect to a particular budget. A
multi-objective algorithm that attempts to provide a Pareto optimal
set is also possible.

Architecture simulators take configurations then run a simu-
lation to produce statistics. These configurations are, in a sense,
a language to describe a particular system. I therefore propose
using Grammar-based GP [3] to build these configurations. The
Grammar-based GP algorithm will construct the configuration (a
description of the system in the simulator’s “language”) with the
simulator providing the fitness. Using a grammar-based GP will
allow extension or reduction of the grammar based on what aspects
of the design the experimenter wishes to investigate. Unlike other
approaches, a grammar-based approach allows for the introduction
of sensible constraints to reduce the search space down to solutions
that are desirable.

The extendable nature of this framework will allow for the in-
corporation of more exotic designs and configurations. Moving
along from the basic first-step, it will be possible to incorporate
more complex decisions such as which ISA extensions to include
and what competing micro-architectural designs to use. We can
also work further up the layers to toggling kernel parameters, the
operating system, or compiler optimizations. It would be interesting
to see how optimizations at this level could produce synergistic
improvements with changes at lower levels. As many of these de-
sign considerations interact, we should expect a non-linear search
space.

The engineering of this systemwill, in itself, involve considerable
engineering effort, but there are also tooling and infrastructure prob-
lems that should be solved first. Modern simulators are frequently

criticized for not producing results that reflect the systems they
simulate. As the proposed framework would function by searching
through a set of simulated components, we can target engineer-
ing effort to ensure these components simulate systems within
an acceptable margin of error. This is a non-trivial task and will
involve carefully creating simulated components with real-world
equivalents on-hand to ensure they are functioning as intended.
The grammar defining how components may be incorporated can
also be engineered to limit combinations of components to those
known to produce reasonable results. In addition to accurate results
from components, we also need sensible modeling of their cost.
This is necessary to optimize systems within a certain budget or to
produce Pareto optimal sets of solutions. A naive first step would
be to optimize while simply minimizing the number of components
and, for some components, their complexity, but we will need to to
move onto a more realistic model eventually.

Even if we assume accurate simulations with good cost mod-
elling, these simulations take time to execute. For example, in the
gem5 simulator a full boot of the Ubuntu operating system can
take several hours. As search involves evaluating many solutions,
this is problematic. We can, however, take steps to alleviate this.
First, simulations within a single generation can be run indepen-
dently meaning we can utilize parallelization. The second step is to
incorporate simulation tricks. We can, for example, only simulate
particular parts of an input program’s execution and extrapolate the
findings. Finally, we can develop a hierarchy of workloads in which
small tests are evaluated first and may be used to filter obviously
bad designs early. In essence, we can front-load evaluation with
“sanity checks” that incur a low evaluation cost but allow a “fail
fast” strategy for bad solutions.

3 CLOSING REMARKS
Much optimization research has been carried out regarding the
optimization of software. In this paper I have outlined an approach
that sees the entirety of a computer system as something that is
configurable. Using the latest from the field of search-based opti-
mization, I believe we can start building tools to design systems
with respect to a target workload. With the advent of open-source
ISAs such as RISC-V, the continued improvements in software porta-
bility, and customization available all the way down to the level of
silicon, I believe the time is right to start considering research and
development of such tools.

REFERENCES
[1] [n.d.]. SiFive Core Designer. https://www.sifive.com/core-designer. Accessed:

2022-04-05.
[2] Jason Lowe-Power et al. 2020. The gem5 Simulator: Version 20.0+.

arXiv:arXiv:2007.03152
[3] Robert I McKay, Nguyen Xuan Hoai, Peter Alexander Whigham, Yin Shan, and

Michael O’neill. 2010. Grammar-based genetic programming: a survey. Genetic
Programming and Evolvable Machines 11, 3 (2010), 365–396. https://doi.org/10.
1007/s10710-010-9109-y

[4] Justyna Petke, Saemundur O Haraldsson, Mark Harman, William B Langdon,
David R White, and John R Woodward. 2017. Genetic improvement of software:
a comprehensive survey. IEEE Transactions on Evolutionary Computation 22, 3
(2017), 415–432. https://doi.org/10.1109/TEVC.2017.2693219

[5] Adrian Thompson. 2012. Hardware Evolution: Automatic design of electronic circuits
in reconfigurable hardware by artificial evolution. Springer Science & Business
Media.

https://www.sifive.com/core-designer
https://arxiv.org/abs/arXiv:2007.03152
https://doi.org/10.1007/s10710-010-9109-y
https://doi.org/10.1007/s10710-010-9109-y
https://doi.org/10.1109/TEVC.2017.2693219

	Abstract
	1 The Vision
	2 First Steps
	3 Closing Remarks
	References

