
Specialising Guava’s Cache to Reduce
Energy Consumption

Nathan Burles1(B), Edward Bowles1, Bobby R. Bruce2, and Komsan Srivisut1

1 University of York, York YO10 5DD, UK
{nathan.burles,eab530,ks1077}@york.ac.uk

2 CREST Centre, University College London, London WC1E 6BT, UK
r.bruce@cs.ucl.ac.uk

Abstract. In this article we use a Genetic Algorithm to perform
parameter tuning on Google Guava’s Cache library, specialising it to
OpenTripPlanner. A new tool, Opacitor, is used to deterministically
measure the energy consumed, and we find that the energy consumption
of OpenTripPlanner may be significantly reduced by tuning the default
parameters of Guava’s Cache library. Finally we use Jalen, which uses
time and CPU utilisation as a proxy to calculate energy consumption,
to corroborate these results.

Keywords: Parameter tuning · Library specialisation · Energy profil-
ing · Reduced power consumption

1 Introduction

The practice of releasing software with configurable parameters is common. This
is due to the widely accepted belief that few pieces of software are truly optimal
for all situations and therefore an interface is required to allow a more optimal
solution to be deployed. Configurable parameters allow developers to release
software for general use instead of developing multiple versions, each tailored to
a specific environment.

The issue with this model is that few know how to properly tune parameters.
To do so requires in-depth knowledge of the software to be configured and the
domain in which it is to be deployed. It is for this reason Automatic Parameter
Tuning is advantageous. Automated Parameter Tuning is the automatic process
of tweaking software parameters until optimal (or near optimal) configurations
are found depending on non-functional (and occasionally functional) properties
desired by the user.

Research into parameter tuning has focused primarily on execution time
[9,17–19], memory consumption [17], and occasionally functional attributes such
as output precision [7]. The rise in mobile computing technology [6] with limited
battery life, and growth in large server farms responsible for consuming large
amounts of energy [10] has sparked a new wave of research into energy efficient
software [2,7,12,15]. For this reason we wish to use SBSE to tune and specialise
parameters to reduce energy consumption.

This paper will outline a method of optimising parameters to reduce
energy consumption using Genetic Algorithms (GAs) to tune Google Guava’s1

1 Available at https://github.com/google/guava.

c© Springer International Publishing Switzerland 2015
M. Barros and Y. Labiche (Eds.): SSBSE 2015, LNCS 9275, pp. 276–281, 2015.
DOI: 10.1007/978-3-319-22183-0 23

https://github.com/google/guava


Specialising Guava’s Cache to Reduce Energy Consumption 277

CacheBuilder class as used by OpenTripPlanner2. Guava’s Cache is similar to
a map, in that it stores a set of associated keys and values. They differ mainly in
their approach to persistence—a map retains all stored associations until they
are explicitly removed, whereas a Cache generally evicts entries automatically
in order to conserve memory.
The ECJ Toolkit. We have chosen to use ECJ [11] to implement the GA
as it is one of the most popular Java-based toolkits for evolutionary computa-
tion [4,20]. Using ECJ requires little setup, only the configuration of parameters;
the selection of the desired Evolutionary Algorithm, the Evolutionary Algorithm
parameters (population size, mutation rate, etc.), and the desired fitness eval-
uation function. For our requirements ECJ serves as a black-box Evolutionary
Algorithm which we trust to be fully tested and reliable.

2 Related Work

Previous work in tuning parameters to reduce energy consumption has been suc-
cessful, albeit in a round-about manner. In 2011 Hoffmann et al. introduced Pow-
erDial [7], a system for dynamically modifying trade-offs between accuracy in com-
putation anduse of system resources during load peaks. Though not directly reduc-
ing energy consumption per se, the framework aims to reduce the amount of com-
puting infrastructure required to manage load peaks in server farms that translates
to significant reductions in energy consumption (as well as capital costs).

Optimising other non-functional attributes using automatic parameter tun-
ing has also been successful. Wu et al. [21] used Genetic Algorithms to tune
both “shallow” and “deep” parameters for both execution time and memory
consumption in the widely used dlmalloc memory allocator. They were able to
show clear trade-offs between these two attributes with possible configuration
options resulting in up to 21 % reduction in memory consumption and a 12 %
reduction in execution time.

Although it is a relatively new area of interest, using SBSE techniques such
as GAs to reduce energy consumption has previously been used by both Schulte
et al. in 2014 [15] and Bruce et al. in 2015 [2] to reduce energy consumption as
a post- and pre-compilation process respectively.

3 Implementation

The improvement process is as follows:

1. Find variation points within the CacheBuilder class, i.e. the declaration of
default values for parameters, and identify the valid values for each of these
parameters, for example integers: int initialCapacity = ?, or enumerated
types: Strength keyStrength = Strength.{strong, weak, soft}.

2. Generate a template version of the CacheBuilder class to allow the variation
points to be easily replaced by the respective element in a solution vector.

3. Given k parameters, the solution representation is a vector containing k inte-
gers [S1, . . . , Sk], where Sk is in the range identified earlier.

2 Available at http://www.opentripplanner.org.

http://www.opentripplanner.org


278 N. Burles et al.

4. Given an assignment, the default parameter values can be replaced and the
modified source file can be written out to disk. The library containing the
mutated parameters is compiled and evaluated as part of OpenTripPlanner
by a measure related to its energy consumption.

Variation Points. The first two items in the process are performed manually, as
the most reliable way to determine valid values for the parameters is by reading
the API documentation. In total, due to dependencies and mutual exclusions,
there are 9 parameters which may be modified—6 integer values and 3 binary
or ternary values.
Mutating the Source Code. For each variation point, the range of potential
substitution values were selected to be appropriate. For example the initial-
Capacity and maximumSize parameters were assigned the range [0, 100000],
whereas keyStrength was assigned the range [0, 1] (mapping to {strong, weak})
and valueStrength the range [0, 2] (mapping to {strong, weak, soft}). As a tem-
plate version of the CacheBuilder class has been created, the substitution values
can be directly inserted and written to disk—using an enumeration where appro-
priate for the selection of reference strengths.
Measuring Energy Consumption. We have used a new tool, Opacitor, to
measure the energy consumption during the evolutionary process. Opacitor
is designed to make measurements deterministic, meaning that multiple runs
are no longer required and very similar algorithms can be accurately compared.
Using a modified version of OpenJDK, Opacitor counts the number of times
each Java opcode was executed. Combined with a model of the energy costs of
each Java opcode, created by Hao et al. [5], the tool is then able to calculate the
number of Joules used.

In order for a Java program running in a standard environment to be deter-
ministic, various features of the Java Virtual Machine (JVM) must be disabled—
namely Just-In-Time compilation (JIT) and Garbage Collection (GC). It is not
appropriate to explicitly disable GC, and so instead the initial memory allocated
to the JVM is increased to the point that GC does not occur. These features
are re-enabled after the evolution has completed, to allow a comparison to occur
under realistic conditions.

An important benefit of a model- and trace-based tool such as Opacitor,
when compared to more common approaches such as timing or physical energy
measurement, is that is can be run concurrently with other programs without
any detrimental effects. This means that fitness evaluations can be executed in
parallel on a multi-core system.

Previous work [16] used Jalen [14] to successfully calculate the
energy required by Quicksort. Jalen uses time and CPU utilisation as a proxy
to calculate energy consumption, and so we have used this tool to corroborate
the results generated by Opacitor during the final comparison.

4 Experiments

We used a metaheuristic search to specialise Guava’s Cache library to suit Open-
TripPlanner with the property of reduced energy consumption. We decided to



Specialising Guava’s Cache to Reduce Energy Consumption 279

use a GA [8] to search the space of solutions, since this has been shown to be
an effective approach for a number of assignment problems [3]. The solution
representation used is a vector of integers r ∈ Z

k. The representation is con-
strained such that each integer falls within its respective bounds, for example a
boolean parameter rbool ∈ [0, 1] or a size parameter may be rsize ∈ [1, 100000]
(limited to ensure the memory requirement does not exceed that available to the
experimental machine).

The GA was configured with a population of 100, running for 100 genera-
tions. New populations were generated using an elitism rate of 5 %, single-point
crossover with a rate of 75 %, and one-point mutation with a rate of 25 % with
candidates selected using tournament selection with arity 2. These parameters
were selected, after preliminary investigations, in order to provide a sufficient
opportunity for the evolution to proceed without requiring an excessive number
of fitness evaluations as each evaluation takes over 2 min on a 3.25 GHz CPU.
During experimentation we ran the GA five times, with a different seed to the
random number generator, in order to test the robustness of the evolution.

5 Results

Statistics were generated using the Astraiea statistical testing framework [13]
which performs tests in accordance with the guidelines of Arcuri and Briand [1],
namely the Wilcoxon/Mann Whitney U Statistical Tests and Vargha-Delaney
Effect size tests. The results were obtained with 100 samples in each dataset.
The result of each of the runs of the GA was a similar set of parameter settings,
differing only in the exact integers used for the size parameters, and so the first
results generated were used for the final comparison between the original library
and our specialised version.

The results of the final comparison between Cache versions are shown in
Table 1. During the evolution, with JIT disabled and GC avoided, the best set
of parameters found used 13596.94 J. This compares favourably with 13857.65 J
required by the original version, although it may not initially appear to be a
particularly sizeable reduction. This is due to the overhead incurred by Open-
TripPlanner when initially loading mapping and transit data—this is unaffected

Table 1. Energy (J) required to exercise Guava’s Cache library, as used by OpenTrip-
Planner (mean of 100 runs, and standard deviation σ), as well as the p-values (p) and
effect size measures (e) comparing our result to the original.

Measurement GA Original OpenTripPlanner

technique Overhead (J)J J p e

Opacitor 13596.94 13857.65 – – 10027.24

Opacitor with 807.69 888.82 652.98
<.001 1.00

JIT and GC σ1.57 σ1.75 σ1.27

783.79 815.50 662.45
Jalen <.001 1.00

σ2.18 σ1.84 σ1.48



280 N. Burles et al.

by the Guava Cache, and so these measurements are also included in Table 1 to
allow a more useful comparison. Subtracting this overhead shows the improve-
ment more representatively—the evolved version used 3569.70 J and the original
version used 3830.41 J. As the measurements in this case are not subject to
noise, only one measurement for each of the versions is generated and thus no
statistical tests are required.

More interestingly, significant results were also found when noise was
reintroduced—enabling JIT and using the JVM’s default memory allocation set-
tings (allowing for GC when necessary). In this case the GA’s solution required
807.69 J, compared with 888.82 J for the original (or 154.71 J and 235.84 J respec-
tively after subtracting the overhead). As the energy measurement now contains
noise, due to the non-determinism of JIT and GC, the p-values and effect size
measures are calculated. Vargha and Delaney suggest that a large difference
between data sets is indicated by a value of 0.71, and so the results show that a
significantly improved version of Guava’s Cache has been found by the GA.

To help corroborate these figures, and support the assertion that Opacitor
provides realistic results, we used Jalen (with JIT and GC) to provide additional
measurements. The results generated by Jalen can be seen to support the results
provided by Opacitor.

6 Conclusion

We have demonstrated a method of optimising parameters to reduce energy con-
sumption using Genetic Algorithms, applied to Google Guava’s CacheBuilder
class as used by OpenTripPlanner and using a new tool, Opacitor, to evaluate
the energy consumption.

Our results showed that specialising libraries to software packages can pro-
vide significant improvements, with the best solution in this case providing a
saving of approximately 9 %. The results generated by Opacitor were corrob-
orated using Jalen, which uses time and CPU utilisation as a proxy for energy
consumption. As such, it is reasonable to claim that specialising the library has
improved both the energy consumption and the execution time of the software
using it. Modifying the Cache’s default parameters also has an effect on the mem-
ory consumption, and so future work should investigate the trade-off between
energy/time and memory.

Acknowledgement. Work funded by UK EPSRC grant EP/J017515/1. Data avail-
able at https://github.com/nburles/burles2015specialising.

References

1. Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for assessing random-
ized algorithms in software engineering. Softw. Test. Verif. Reliab. 24(3), 219–250
(2012)

2. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In: GECCO (2015, to aappear)

3. Chu, P.C., Beasley, J.E.: A genetic algorithm for the generalised assignment prob-
lem. Comput. Oper. Res. 24(1), 17–23 (1997)

https://github.com/nburles/burles2015specialising


Specialising Guava’s Cache to Reduce Energy Consumption 281

4. Gagné, C., Parizeau, M.: Genericity in evolutionary computation software tools:
principles and case-study. Int. J. Artif. Intell. Tools 15(02), 173–194 (2006)

5. Hao, S., Li, D., Halfond, W.G., Govindan, R.: Estimating mobile application energy
consumption using program analysis. In: 35th International Conference on Software
Engineering, pp. 92–101. IEEE (2013)

6. Heggestuen, J.: Business insider: one in every 5 people in the world own a smart-
phone, one in every 17 own a tablet (2013). http://www.businessinsider.com/
smartphone-and-tablet-penetration-2013-10. Accessed 3 May, 2015

7. Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A., Rinard, M.:
Dynamic knobs for responsive power-aware computing. ACM SIGPLAN Not. 46,
199–212 (2011). ACM

8. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence. MIT
Press, Cambridge (1992)

9. Katagiri, T., Kise, K., Honda, H., Yuba, T.: FIBER: a generalized framework for
auto-tuning software. In: Veidenbaum, A., Joe, K., Amano, H., Aiso, H. (eds.)
ISHPC 2003. LNCS, vol. 2858, pp. 146–159. Springer, Heidelberg (2003)

10. Koomey, J.: Growth in data center electricity use from 2005 to 2010, August 2011
11. Luke, S., Panait, L., Balan, G., et al.: A java-based evolutionary computation

research system, March 2004. http://cs.gmu.edu/∼eclab/projects/ecj
12. Manotas, I., Pollock, L., Clause, J.: SEEDS: a software engineer’s energy-

optimization decision support framework. In: Proceedings of the 36th International
Conference on Software Engineering, pp. 503–514. ACM Press, New York (2014)

13. Neumann, G., Swan, J., Harman, M., Clark, J.A.: The executable experimental
template pattern for the systematic comparison of metaheuristics. In: Proceedings
of the 2014 Conference Companion on Genetic and Evolutionary Computation
Companion, pp. 1427–1430. ACM (2014)

14. Noureddine, A., Bourdon, A., Rouvoy, R., Seinturier, L.: Runtime monitoring of
software energy hotspots. In: Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pp. 160–169. IEEE (2012)

15. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler soft-
ware optimization for reducing energy. In: Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 639–652. ACM (2014)

16. Swan, J., Burles, N.: Templar-a framework for template-method hyper-heuristics.
In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., Garćıa-Sánchez, P.,
Burelli, P., Risi, S., Sim, K. (eds.) EuroGP 2015, LNCS, vol. 9025, pp. 205–216.
Springer, Heidelberg (2015)

17. Tăpuş, C., Chung, I.H., Hollingsworth, J.K., et al.: Active harmony: towards auto-
mated performance tuning. In: Proceedings of the 2002 ACM/IEEE Conference on
Supercomputing, pp. 1–11. IEEE Computer Society Press (2002)

18. Vuduc, R.W., Demmel, J.W., Bilmes, J.: Statistical models for automatic perfor-
mance tuning. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S.,
Tan, C.J.K. (eds.) ICCS 2001. LNCS, vol. 2073, pp. 117–126. Springer, Heidelberg
(2001)

19. Whaley, R.C., Dongarra, J.J.: Automatically tuned linear algebra software. In:
Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, pp. 1–27.
IEEE Computer Society (1998)

20. White, D.R.: Software review: the ECJ toolkit. Genet. Program Evolvable Mach.
13(1), 65–67 (2012)

21. Wu, F., Weimser, W.: Deep parameter optimisation. In: GECCO (2015, to appear)

http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10
http://www.businessinsider.com/smartphone-and-tablet-penetration-2013-10
http://cs.gmu.edu/~eclab/projects/ecj

	Specialising Guava's Cache to Reduce Energy Consumption 敳敲癥搠䁤 㴀 ⨀䁬整䁴潫敮 ⴀ　⸀㔀攀�
	1 Introduction
	2 Related Work
	3 Implementation
	4 Experiments
	5 Results
	6 Conclusion
	References


