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Abstract. We give a model of parallel distributed genetic improvement.
With modern low cost power monitors; high speed Ethernet LAN latency
and network jitter have little effect. The model calculates a minimum
usable mutation effect based on the analogue to digital converter (ADC)’s
resolution and shows the optimal test duration is inversely proportional
to smallest impact we wish to detect. Using the example of a 1 kHz 12 bit
0.4095 Amp ADC optimising software energy consumption we find: it will
be difficult to detect mutations which an average effect less than 58 μA,
and typically experiments should last well under a second.

Keywords: Theory · Genetic improvement · Genetic programming ·
Software engineering · SBSE · Parallel EC · Distributed power monitor-
ing

1 Introduction

Evolutionary computing (EC) can be incorporated into product development
either by inventing new designs or optimising existing ones. In both it is funda-
mentally important to be able to decide if a design is fit or not. The widespread
adoption of fully functional mobile computers in the form of smartphones has
thrust optimising software energy usage, and so battery life, into the limelight.

In many cases the quality of designs is calculated using simulators before
manufacture. However, it is necessary that the simulation be detailed enough so
that it can tell automatically a better design from an already good design. In the
case of simple electronics such high quality simulator may exist. However even in
the case of single chip devices, such simulators run several orders of magnitude
slower that the software running on the chip and good simulators for the whole
of a portable device may not be feasible. So for feasibility, cost, credibility and
speed there is increasing interest in optimising portable electronic devices by
using real devices and real power monitors (Fig. 1) to measure their true energy
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Fig. 1. MAGEEC power measurement board �http://mageec.org/

consumption and use it as part of the EC fitness function (Bruce 2015). With the
advent of genetic improvement (GI) (Langdon 2015) it is increasingly common
to view software as mutable and apply EC directly to it (White et al. 2008; Bruce
2015; Schulte et al. 2014a). There is great interest in using real measurements.
Although our immediate use case is genetic improvement and the evolution of
better software, here we are concerned with the practical limits of using real-
world measuring devices in EC.

The next section presents a mathematical model of the accuracy of a single
measuring device directly connected to single test device. Since fitness testing is
usually the bottleneck in EC, it is common to consider running fitness tests in
parallel. Section 3 expands the model of discretised measurement to a high speed
Ethernet local area network based distributed system of dozens of computer
hardware under test. Since Ethernet is a stochastic protocol, network delays are
necessarily variable. Section 4 calculates that the best tests will be surprisingly
short, under one second. This is in keeping with our view that often too much care
is taken to get an accurate fitness value, where it is only necessary to be able to
tell a good mutant from a less good one. Section 5 discusses the results in Sect. 4,
ways to avoid EC degenerating into random search, three alternatives to LAN
messages and concludes. To save space some of the intermediate mathematical
steps and some of the discussion have be omitted. (The full text can be found
in our technical report of the same name RN/16/01.)

2 Directly Connected Monitor

Figure 2 shows a system to automatically measure physical components of an EC
fitness function. The “physical system” will be subject to mutations taken from
the current population and the system will attempt to quantify the mutation’s

http://mageec.org/wiki/Power_Measurement_Board
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/rn_16_01.pdf
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Fig. 2. Typical modern measuring and monitoring systems interface to the real world
(physical system) via an analogue signal conditioning unit, a measuring device (e.g.
a thermocouple) and an Analogue to Digital Converter (ADC). Although we consider
optimising energy consumption, our mathematical framework can be generally applied.
The conditioned signal is converted into an analogue electrical signal, which converted
into a digital signal by the ADC, which is then read periodically at a fixed rate by the
computer.
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Fig. 3. Energy used is given by area of yellow rectangle times supply voltage (5 V)
E = 5I1t = 5 × 203.6 mA × 8.6 mS = 8.753 mJ. Current resolution a = 0.1 mA
(12 bit ADC full scale 0.4095 Amp). Sampling frequency f = 1 kHz. Quantised energy
= 5 × 203.5 mA × 8 mS = 8.14 mJ. Noise = 8.753 − 8.14 = 0.6134. Relative noise
= 0.6134/8.753 ≈ 7 %.
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effect. Our model applies generally to EC using physical measurement. It could
deal with not just the power consumed by the CPU but also by other activities
particularly the screen (Li et al. 2015), radio links and GPS.

In the case of genetic improvement, the mutation is applied to the software
running on the physical devices (e.g. a smartphone) and the ADC (analog to
digital converter) will measure its power consumption. Since phones operate at
about 5 V little signal conditioning other than a fixed resistor is needed.

The simple model we present is potentially suitable for the very high fre-
quency response that modern oscilloscopes are capable of. Since such oscillo-
scopes cost many thousands of pounds we will concentrate on automated power
monitors costing a few tens of pounds each (such as the one in Fig. 1). Notice
that although they cannot measure very high frequency (short duration) effects,
they can still accurately measure average power consumption. Even if there is
significant amounts of power at high frequency, it does not disappear when mea-
sured at lower frequencies and (assuming there are no serious aliasing effects) it
simply contributes to the low frequency average.

The simple model presented in Fig. 3 assumes running the test causes the
power consumption to rise but that the energy monitoring is quantised both
into discrete time samples and that measurements of power consumption are
also discrete. It assumes the power monitor is not synchronised to the start of
the test software but that the start and end of the test are known. The actual
energy used by the test is proportional to the area of the yellow rectangle in
Fig. 3 but the reported (discretised) energy is proportional to the number of
unit rectangles inside the rectangle bounded by the thick black lines and the
x axis. Next we will mathematically model the difference between the two.

– Supply voltage (assumed known and constant) V Volts.
– Sampling frequency = f , e.g. 1000 Hz.
– Current resolution = a, e.g. 0.1 mA, thus a 12 bit Analogue to Digital Con-

verter (ADC) will have a maximum reading of 0.4095 Amperes.
– Unloaded current draw I0 Amps.
– Actual load I1 Amps.
– The actual energy used is V I1t Joules.
– δ is the time in seconds between the load being applied and first the sample.
– Assuming x is positive, the integer part of x is �x� = x − frac (x).
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f
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Since the start of running the software is unrelated to the exact point in time
measurements are taken, δ will be uniformly scattered in the range [0 to 1/f ]
and so the expected value of δ is 1/2f (Fig. 3). Since I1 is much bigger than a, it
is reasonable to assume the fractional part of I1/a, i.e. frac (I1/a), is uniformly
distributed across the interval [0–1]. (With a uniform distribution in [0–1], the
expected value of frac (·) is 1/2 and the standard deviation is

√
1/12 = 0.288675).

So the expected noise (Eq. 1) becomes:
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We can approximate the fractional noise by dropping the last term in Eq. 2.
We can express Eq. 2 in terms of the current measurement resolution and number
of samples N = ft. Each ADC raw value is I1/a = k. (For a twelve bit resolution
analogue to digital converter and I1 near the middle of the range k ≈ 2048.) So
Eq. 2 becomes fractional noise ≈ 1/4096 + 1/N . That is, with a coarse sampling
the noise is dominated by the number of samples N but if we can either increase
the sampling rate or run the experiment for longer, the 1/N term becomes
less important and the noise tends to a limit given by the resolution of the
ADC. Further, once the number of samples, N , exceeds the resolution of the
ADC there is only marginal reduction in noise from increasing the number of
samples. Using our 12 bit 1 kHz example ADC, there is only marginal gain in
increasing the number of measurements above 4096. That is, greatly increasing
the measurement time, t, above 4096/f ≈ 4 s, gives little further improvement.
See also end of Sect. 4.

3 Distributed Power Measurement

In the previous section we assume that the onset of the load and when its finished
are known exactly. In the case of distributed power monitoring, two commands
are sent via a local area network (LAN). The first is to start the recording
of energy consumption and the second to stop the recording. Initially we shall
concentrate upon the variation introduced by the LAN and then include the
energy measurement noise given by Eq. 1.

Measuring energy is initiated when the start message packet (p1) reaches
the monitoring computer at time s1. (The LAN packets are shown by dotted
arrows in Fig. 4.) When the acknowledgement packet (p2) reaches the test com-
puter (s2), it starts the experiment, raising the current from rest (I0) to I1. t sec-
onds later (e1) the experiment finishes: the load drops back to I0 and the test
computer sends a message packet (p3) stopping the measurement (e2). In Fig. 4
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Fig. 4. Measuring energy is initiated when the start message (left arrow) reaches the
monitoring computer s1. When the acknowledgement reaches the test computer s2,
it starts the experiment, raising the current from rest (I0) to I1. t seconds later the
experiment finishes: the load drops back to I0 and the test computer sends a message e1
ending the measurement e2. The experiment is done twice (blue and red) but different
results are obtained since the network delays are different. As in Fig. 3, energy used
is given by area of under current curves times supply voltage (5 V). Left (blue) =
12.60 mJ, right (red) = 12.40 mJ, relative difference = 0.2/12.60 ≈ 1.6%. (Color figure
online)

the experiment is done twice but different results are obtained since although
the test computer starts at the same time and the experiment takes t seconds in
both cases, the network delays are different.

The measured energy is V (I0(s2 − s1) + (I1 − I0)t). Where (s2 − s1) is the
observed duration. This is longer than t because of the transit times of the two
network packets p2 and p3. (Figure 5 gives transit times for two LAN pack-
ets, there and back.) Now (s2 − s1) = p2 + t + p3 so measured energy =
V (I0(p2 + t + p3) + (I1 − I0)t) = V (I0(p2 + p3) + I1t).

We will assume that the transit times for the LAN packets are on average
the same and that variations are independent. Thus the variance in the energy
measurement due to network work variations (i.e. V , I1 and t are assumed fixed):

V 2I20 (var (p2) + var (p3)) = 2V 2I20 var (p) (3)

Since we assume that p2 are p3 are equally distributed and independent we drop
their subscripts are refer to them both as p. So var (p) is the variance of LAN
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Fig. 5. Distribution of 3780 network delays. Notice approximate match of Normal
distribution and also long tail of much longer delays.

packet transit times (SD (p) =
√

var (p)). The fractional variation in the energy
measurement is

=
√

2 V I0SD (p)
V (2I0p + I1t)

=
√

2 SD (p)
(2p + tI1/I0)

Figure 5 suggests the mean of the two packet transit time (2p) is typically
0.258 mS and

√
2 SD(p) is 24 μs.

The variation in the discretization noise (given by Eq. 1) is due to variation
in the duration t and size I1 of the load. Treating these as independent gives the
variance in the discretization noise. (Remember the variance of the product of
two independent variables x and y (of means X and Y ) is var (xy) = X2var (y)+
Y 2var (x) + var (x)var (y) (Goodman 1960 Eq. 2).)
Remember (Eq. 1) discretization noise/V
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We now calculate the variance of discretization noise/V one term at a time. Note
the variance of the uniform distribution of the range [0-1] is 1/12. Starting with
the first (depends on t) and last terms
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Now the middle terms (which depend on both I1 and δ).



256 W.B. Langdon et al.

I1

(
δ +

1

f
frac ((t−δ)f)

)
− aδ frac

(
I1
a

)
= δ

(
I1 − a frac

(
I1
a

))
+

I1
f

frac ((t−δ)f)

Taking the variance of the first part (assuming that δ and I1 are independent)
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Combining formulae 4–6 gives var (discretization noise/V ) as:
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Referring to the end of Sect. 2 we have t = N/f and I1 = ka. Since the load
and measurement computers are not synchronised δ = 1/2f and var (δ) = f2/12
(Fig. 3). So var (discretization noise/V ) becomes

=
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Assuming a 12 bit ADC and I1 approx. half full scale var (discretization noise)
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We will assume t is long compared to both the sampling frequency f and the
network variation. This allows us to assume that the variance in the energy
reported is given by the sum of the variance due to network variation (Eq. 3)
and that due noise in the measuring system (Eq. 7).
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Assuming both t and I1 are fixed so variance of energy measurement is
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4 Maximising Beneficial Mutation Detection Rate

Suppose we run the original version of the software to be improved and record
its use of energy. We then mutate the software. Suppose the mutation is benefi-
cial, in that it reduces the energy consumed by Δ. (Here we assume the power
consumption is spread uniformly across the time the software runs. Notice we
are assuming the mutation changes the power consumption but the runtime t is
not changed. See Sect. 5). If Δ2 is large compared to the measurement variance
(Eq. 8) then we can reasonably expect to measure that the mutation has been
beneficial. If the difference is small, we may want to repeat the measurement
to increase Δ. However, this would proportionately reduce the rate that we can
test mutations. Equation 8 means we can ask: Is

Δ2 much bigger than 2V 2I20var (p) + V 2a2t2

12 + V 2a2

144f2

(
24k2 − 12k + 14

)
? (9)

Let ΔI = Δ/V t be the beneficial effect of the mutation expressed in terms
of energy divided by the length of the testing period. Notice that increasing the
mutation testing time also increases the variance in the energy measurement.
We divide by the supply voltage V so that ΔI can be expressed as the average
reduction in current. Using Δ2 = (ΔI)2V 2t2 in Question 9 and then dividing
through by V 2 means Question 9 is the same comparison as: Is (the signal)

t2(ΔI)2 much bigger thana2t2

12 + 2I20var (p) + a2

144f2

(
24k2 − 12k + 14

)

Notice the last two terms do not depend on t and so for ΔI > a
√

1/12 we can
make the energy signal bigger than its variability by increasing t. However, we
cannot effectively detect beneficial mutations with a proportionate effect less
than ΔI = a

√
1/12 ≈ 0.3 a. If we require the signal to be at least twice the

variability (4 times the variance) we can calculate the minimum time required.

t2(ΔI)2 =
a2t2

3
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Let Δk = ΔI/a, assume I0 ≈ I1 = ka

t ≈
√

24k2var (p) + 1
12f2 (24k2 − 12k + 14)

3(Δk)2 − 1
(10)

Alternatively we can express this minimum time (Eq. 10) as a minimum number
of number of samples using N = ft (N was defined at the end of Sect. 2).

N ≈
√

k2 (24f2var (p) + 2) − k + 14/12
3(Δk)2 − 1

Again assuming a 1 kHz 12 bit ADC and noting that Fig. 5 suggests
√

2 SD(p)
is 24 μs. i.e. var (p) = 2.86 × 10−10 s2. So f2var (p) = 2.86 × 10−4.

N ≈ k

√
2

3(Δk)2 − 1
(11)

Δk is the mutation’s impact on energy consumption, assumed constant over
time, expressed as a current in units of the analogue to digital converter’s reso-
lution. If the average impact of the mutation is large compared to the resolution
of the ADC, then Δk � 0.58. Therefore for our 1 kHz 12 bit ADC and mutations
with a reasonably large impact the measurement need only last 1.7/Δk s.

5 Discussion and Conclusions

Experimental work suggests that the impact of software mutations is very non-
uniform, with many mutations having no effect or being detrimental and only a
small number being beneficial (Langdon and Petke 2015; Schulte et al. 2014b).
Hence setting the experimental parameters to allow rapid detection of large
impact mutations risks not detecting many small impact mutations. Where large
mutations are rare this risks the EC degenerating into random search. Indeed if
the impact of mutations is too small to be reliably detected (i.e. ΔI < 0.58a)
then we cannot expect miracles from EC.

We have modelled the energy consumption of software mutations by assuming
their impact is spread uniformly throughout each test run. This is unlikely to be
true and more sophisticated models might look at how the impact of mutations
is distributed. However, for a mutation to be detected its effect will still need
to be large compared to the ADC sensitivity. This suggests our present lower
bound (ΔI = 0.58a) might be improved at the cost of assuming more about
software mutants, however, it appears that a critical lower bound will still exist.

If the test program is run repeatedly in order to integrate the mutation’s
effect, we would expect repeated patterns in the power monitor’s signal. There
are very sensitive algorithms which can reliably measure periodic differences even
in the presence of sizeable noise.
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Alternatively, it might be possible to use signal processing to recognise the
onset and termination of the measurement period. Or, several low end test beds
(e.g. the Raspberry Pie) have output pins which could be used to start and stop
energy measurement. Finally, both the computer under test and the computer
running the energy monitors have sophisticated clocks, which can be synchro-
nised and thus absolute time (rather than explicit message passing) might be
used to keep track of the start and end of energy consumption experiments.

1. It will be difficult to detect mutations which have on average an effect less
than

√
(1/3) a (a is the ADC’s resolution) on the current consumed. For our

example 12 bit 0.4095 Amp ADC this sets a lower limit of 58 μA.
2. On the other hand if the effect is much bigger than 58μA, there is little to

be gained by running measurement for longer than a second. Equation 11
suggests the ideal duration falls in proportion to the smallest effect size we
wish our evolutionary system to detect.
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