JSHRINK: IN-DEPTH INVESTIGATION INTO DEBLOATING
MODERN JAVA APPLICATIONS

Paper at: https://www.bobbybruce.net/assets/pdfs/publications/bruce-2020-jshrink.pdf

|

BOBBY R. BE. TIANYI ZHANG.‘JASPREET ARORA, GUOQIG HARRY XU,
AND MIRYUNG KIM

PRESENTED BY BOBBY R. BRUCE

https://www.bobbybruce.net/assets/pdfs/publications/bruce-2020-jshrink.pdf

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

DESIRED

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

OTHER
FEATURE

DESIRED
FEATURES

OTHER
FEATURE

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

OTHER
FEATURE

DESIRED
FEATURES

OTHER
FEATURE

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

OTHER
FEATURE

LIBRARY DESIRED

FEATURES

DESIRED

APP FEATURES

DESIRED OTHER
FEATURE FEATURE

LIBRARY

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

OTHER
OTHER
FEATURE FEAIURE

LIBRARY DESIRED

FEATURES

DESIRED
APP FEATURES

DESIRED OTHER
FEATURE FEATURE

OTHER
FEATURE

LIBRARY

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

OTHER
OTHER
FEATURE FEAIURE

LIBRARY DESIRED

FEATURES APP

DESIRED
FEATURES

DESIRED OTHER
FEATURE FEATURE

OTHER
FEATURE

LIBRARY

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

OTHER
OTHER
FEATURE FEAIURE

LIBRARY DESIRED

FEATURES APP

DESIRED
FEATURES

DESIRED OTHER
FEATURE FEATURE

OTHER
FEATURE

LIBRARY

More Storage

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

OTHER
OTHER
FEATURE FEATURE

LIBRARY

DESIRED
FEATURES APP

DESIRED
FEATURES

More Storage

DESIRED OTHER
FEATURE FEATURE

LIBRARY FEX.II-.IﬁgE Increased Download Times

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

OTHER
OTHER
FEATURE FEAIURE

LIBRARY

DESIRED
FEATURES APP

DESIRED
FEATURES

More Storage

DESIRED OTHER
FEATURE FEATURE

LIBRARY FEX.II-.IﬁgE Increased Download Times

Increased Attack Surface

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

LIBRARY DESIRED

FEATURES APP

DESIRED

More Storage

DESIRED
FEATURE

LIBRARY

Increased Download Times

Increased Attack Surface

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

LIBRARY DESIRED

FEATURES

DESIRED
FEATURES

DESIRED
FEATURE

More Storage

LIBRARY

Increased Download Times

Increased Attack Surface

JSHRINK

PREVIOUS WORK

JSHRINK

PREVIOUS WORK

Lots of good work on debloating C/C++; but Java has been largely ignored.

JSHRINK

PREVIOUS WORK

Lots of good work on debloating C/C++; but Java has been largely ignored.

Practical Experience with an Application Extractor for Java
Frank Tip Chris Laffra Peter F. Sweeney
IBM T.J. Watson Research Center
P.O. Boz 704, Yorktown Heights, NY 10598, USA
{tip,laffra,pfs}@vatson.ibm.com

Exception: “Practical Experience with an Application
Extractor for Java”, by Tip et al. OOPSLA 1999

David Streeter
IBM Toronto Laboratory
1150 Eglinton Ave. East
Toronto, Ontario, Canada

daves@ca.ibm.com

Abstract niques for extracting Java applications®. These t forma-

Java programs are routmely itted over low-bandwidth
network con d class file archives (i.e.,
zip files and jar files). Smce “archive size is directly propor-
tional to download time, it is desirable for applications to be
u small as pouxble T)us paper is concerned with the use
tr such as] of dead meth-
ods and fields, inlining of method calls, and lunphﬁcntlon of
the class hierarchy for reducing application size. Such “ex-
traction” techniques are generally believed to be espccial.ly
useful for applications that use class libraries, since typi-
cally only a small trachon ofa hbruy s functionality is u.sed

tions include:
e removal of redundant methods and fields,
e devirtualization and inlining of method calls,
e transformation of the class hierarchy, and

or ing of packa 1 , methods and fields,

and have the effect oi lcducmg application smc Application
extraction is g ly believed to be especially useful when
an upphcatlon is shipped with a (proprietary) class library,
b typically only a small fraction of the library’s func-

By “pruning away” unused library functionality, appli

lity is used. In such cases, “pruning away” unused li-

size can be reduced dramatically. We impl ted a b
of application extraction techniques in Jax, an application
extractor for Java, and evaluate their effectiveness on a set of
realistic benchmarks ranging from 27 to 2,332 classes (with
archives ranging from 56,796 to 3,810,120 bytes). We report
archive size reductions ranging from 13.4% to 90.2% (48.7%
on average).

1 Introduction

Java®' [10] programs are routinely transmitted over the in-
ternet as compressed class file archives (i.e., zip files and
jar files). A typical example of this situation consists of
downloading a web page that contains one or more embed-
ded Java applets. The downloading of class file archives is
increasingly often the distribution mechanism of choice for
stand-alone Java applications as well (especially for “net-
work computers”). Since the time required to download an
application is proportional to the size of the archive, it is
desirable for the archive to be as small as possible.

In this paper we evaluate the effectiveness of a number
of compiler-optimization and program transformation tech-

d k of Sun Mi

*Java is a

Pormission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commerciai advant

-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA ‘99 11/99 Denver, CO, USA

® 1999 ACM 1-58113-238-7/99/0010...65.00

brary functionality can dramatically reduce application size.

We implemented a number of application extraction tech-
niques in the context of Jax (short for Jikes Application
eXtractor). Jax reads in the class files [15] that constitute
a Java application, and performs a whole-pxogn.m analysis
to determine the ts (e.g., methods, and
fields) of the tpphc:hon that must be reta.mcd in order to
preserve program behavior. Jax removes the unnecessary
components, performs several size-reducing transformations
to the application, and writes out a class file archive con-
taining the extracted application. Jax relies on user input
to specnfy the comp ts of the application that are ac-
cessed using Java's reflection mechanism (3], but the ex-
traction p is fully ti othennse Jax has been
available on IBM’ alphaWorks web site® since June 1998
and has been downloaded over 10,000 times since then. We
are planning to ship Jax as a Technology Preview with an
IBM product (IBM VisualAge Java 3.0, Enterprise Edition)
later this year.

We evaluate the performance of Jax on a set of real-
life benchmarks ranging from 27 to 2,332 classes (the cor-
responding ucluves range ﬁom 56,796 to 3,810,120 bytes),

and in size 1 g from 13.4%
to 90.2% (48. 7% on average'). M nts over mod
and LAN connections confirm that download times are re-
duced proportionally.

?In what follows, the word ‘application’ will be used to refer to
applications as well as applets, unless otherwise stated.

*www.alphaWorks.ibe. con/toch/JAX

‘Al average percentages reported in this paper are computed using
the geometric mean.

JSHRINK

PREVIOUS WORK

Lots of good work on debloating C/C++; but Java has been largely ignored.

Practical Experience with an Application Extractor for Java
Frank Tip Chris Laffra Peter F. Sweeney
IBM T.J. Watson Research Center
P.O. Boz 704, Yorktown Heights, NY 10598, USA
{tip,laffra,pfs}@vatson.ibm.com

Exception: “Practical Experience with an Application
10 ot Extractor for Java”, by Tip et al. OOPSLA 1999

daves@ca.ibm.com

Abstract

Java progn.ms are routu\ely ttansmltted over low-bandwidth
network ¢ d class file archives (i.e.,
zip files and jar files). Slnce “archive size is directly propor-
tional to download time, it is desirable for applications to be
u small as posnble Thu paper is concemed with the use

such as] of dead meth-
ods a.nd ﬂeldt, inlining of method calls, and nmphﬁcn.tlon of
the class hierarchy for reducing application size. Such “ex-
traction” techniques are generally believed to be espccial.ly
useful for applications that use class libraries, since typi-
cally only a small tmchon ofa hbnry s funcuonnlny is md

boaabt

niques for g Java
tions include:

e removal of redundant methods and fields,
o devirtualization and inlining of method calls,

lications?. These t forma-

o transformation of the class hierarchy, and

. ing of packa 1 thods and fields,

and have the effect oi !cducmg application size. Application
extraction is lieved to be pe ially useful when

By “pruning away” " unused hbn.ry t

size can be reduced dramat, . We impl ted a b
of application extraction techmquel in Jn.x, an application
extractor for Java, and evaluate their effectiveness on a set of
realistic benchmarks ranging from 27 to 2,332 classes (with
archives ranging from 56,796 to 3,810,120 bytes). We report
archive size reductions ranging from 13.4% to 90.2% (48.7%
on average).

1 Introduction

Java®' [10] programs are routinely transmitted over the in-
ternet as compressed class file archives (i.e., zip files and
jar files). A typical example of this situation consists of
downloading a web page that contains one or more embed-
ded Java applets. The downloading of class file archives is
increasingly often the distribution mechanism of choice for
stand-alone Java applications as well (especially for “net-
work computers”). Since the time required to download an
application is proportional to the size of the archive, it is
desirable for the archive to be as small as possible.

In this paper we evaluate the effectiveness of a number
of compiler-optimization and program transformation tech-

d

1Java is a k of Sun Microsy

Pormission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commerciai advant

-age and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA ‘99 11/99 Denver, CO, USA

® 1999 ACM 1-58113-238-7/99/0010...65.00

an lication is shipped with a (p y) class library,
b typxc:lly only a small fraction of the hbruy 's func-
tionality is used. In luch cases, prumng away” unused li-
brary functionality can d application size.

We nnplemented a number of tpphcttlon extraction tech-
niques in the context of Jax (short for Jikes Application
eXtractor). Jax reads in the class files [15] that constitute
a Java application, and performs a whole-pxogum analysis
to determine the ts (e.g., methods, and
fields) of the :pphc:tmn that must be retained in order to
preserve program behavior. Jax removes the unnecessary
components, performs several si t ti
to the application, and writes out a class file archive con-
taining the extracted application. Jax relies on user input
to speclfy the comp ts of the application that are ac-
cessed using Java’s reflection mechanism [3], but the ex-
traction p is fully ti othenme Jax has been
available on IBM’ ulphuWoxlu web site’ since June 1998
and has been downloaded over 10,000 times since then. We
are planning to ship Jax as a Techno]ogy Preview with an
IBM product (IBM VisualAge Java 3.0, Enterprise Edition)
later this year.

We evaluate the petfotmance of Jax on a set of real-
life benchmarks ranging from 27 to 2,332 classes (the cor-
responding ucluves range fxom 56,796 to 3,810,120 bytes),

and in size 1 g from 13.4%
to 90.2% (48. 7% on average'). M nts over mod
and LAN connections confirm that download times are re-
duced proportionally.

?In what follows, the word ‘application’ will be used to refer to
applications as well as applets, unless otherwise stated.

*www.alphaWorks.ibe. con/toch/JAX

‘Al average percentages reported in this paper are computed using
the geometric mean.

> Proposed and evaluated a set of Java bytecode
transformations.

> These transformations have been utilized heavily
by other researchers in this area (including us!).

> The effectiveness of these transformations at
preserving program behavior has not been
evaluated thoroughly in a modern context.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK

Previous works relied on purely static analysis.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK

Previous works relied on purely static analysis.

Java contains dynamic features.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK

1 import java.lang.reflect.*; Previous works relied on purely static analysis.

2

3 class Reflection{

4 public static void main(String[] args) Java contains dynamic features.
5 throws IllegalAccessException,

6 InvocationTargetException,

7 InstantiationException,

8 NoSuchMethodException {

9

10 Class appClass = Reflection.class;

11 Object appObj = appClass.newInstance();
12

13 Method methodl = appClass

14 .getMethod(args[©]);

15 method1.invoke(app0Obj);

16 }

17

18 private void foo(){

19 System.out.println("Hello " + fooCalled());
20 }

21

22 private void fooCalled(){

23 System.out.println("world!");

24}

25

26 private void bar(){

27 System.out.println(" Goodbye world!");

28 }

29

30 private void foobar(){

31 System.out.println("Hello and goodbye™);
32}

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK

1 import java.lang.reflect.*;

2

3 class Reflection{
public static void main(String[] args)

}

throws IllegalAccessException,
InvocationTargetException,
InstantiationException,
NoSuchMethodException {

Class appClass = Reflection.class;
Object appObj = appClass.newInstance();

Method methodl = appClass
.getMethod(args[©]);
method1.invoke(app0Obj);

private void foo(){

}

System.out.println("Hello " + fooCalled());

private void fooCalled(){

}

System.out.println("world!");

private void bar(){

}

System.out.println(" Goodbye world!");

private void foobar(){

}

System.out.println("Hello and goodbye™);

Previous works relied on purely static analysis.

program?

Java contains dynamic features.

Question: What methods are reachable in this

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK

1 import java.lang.reflect.*;

2

3 class Reflection{
public static void main(String[] args)

}

throws IllegalAccessException,
InvocationTargetException,
InstantiationException,
NoSuchMethodException {

Class appClass = Reflection.class;
Object appObj = appClass.newInstance();

Method methodl = appClass
.getMethod(args[©]);
method1.invoke(app0Obj);

private void foo(){

}

System.out.println("Hello " + fooCalled());

private void fooCalled(){

}

System.out.println("world!");

private void bar(){

}

System.out.println(" Goodbye world!");

private void foobar(){

}

System.out.println("Hello and goodbye™);

Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this

program?

Answer: Technically, they all are.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK

1 import java.lang.reflect.*;

2

3 class Reflection{
public static void main(String[] args)

}

throws IllegalAccessException,
InvocationTargetException,
InstantiationException,
NoSuchMethodException {

Class appClass = Reflection.class;
Object appObj = appClass.newInstance();

Method methodl = appClass
.getMethod(args[©]);
method1.invoke(app0Obj);

private void foo(){

}

System.out.println("Hello " + fooCalled());

private void fooCalled(){

}

System.out.println("world!");

private void bar(){

}

System.out.println(" Goodbye world!");

private void foobar(){

}

System.out.println("Hello and goodbye™);

Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this
program?

Answer: Technically, they all are.

Though true, this answer is unhelpful.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK

1 import java.lang.reflect.*;

2

3 class Reflection{
public static void main(String[] args)

}

throws IllegalAccessException,
InvocationTargetException,
InstantiationException,
NoSuchMethodException {

Class appClass = Reflection.class;
Object appObj = appClass.newInstance();

Method methodl = appClass
.getMethod(args[©]);
method1.invoke(app0Obj);

private void foo(){

}

System.out.println("Hello " + fooCalled());

private void fooCalled(){

}

System.out.println("world!");

private void bar(){

}

System.out.println("Goodbye world!");

private void foobar(){

}

System.out.println("Hello and goodbye™);

Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this
program?

Answer: Technically, they all are.

Though true, this answer is unhelpful.

In Java, practical reachability analysis requires a
dynamic component

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK

1 import java.lang.reflect.*;

2

3 class Reflection{
public static void main(String[] args)
throws IllegalAccessException,

InstantiationException,
NoSuchMethodException {

4
5
6 InvocationTargetException,
7
8
9

10 Class appClass = Reflection.class;
11 Object appObj = appClass.newInstance();

13 Method methodl = appClass
14 .getMethod(args[©]);
15 method1.invoke(app0Obj);

16 }

18 private void
19 System.out.
20}

22 private void
23 System.out.
24 }

26 private void
27 System.out.
28 }

30 private void
31 System.out.
32}

foo(){
println('Hello " + fooCalled());

fooCalled(){
println("world!");

bar(){
println("Coodbye world!");

foobar(){
println("Hello and goodbye");

Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this
program?

Answer: Technically, they all are.

Though true, this answer is unhelpful.

In Java, practical reachability analysis requires a
dynamic component

Without decent reachability analysis, debloating is
impossible.

JSHRINK

JSHRINK: A HIGH LEVEL VIEW

CE\{TLE&?EB” TRANBSYFToElgﬂRTEmNs
ANALYSIS
JAVA JAVA
L BYTECODE

JSHRINK

JSHRINK: A HIGH LEVEL VIEW

Dynamic Analysis

CE\{TLE&?EB” TRANBSYFToElgﬂRTEmNs
ANALYSIS
JAVA JAVA
L BYTECODE

JSHRINK

JSHRINK: A HIGH LEVEL VIEW

Dynamic Analysis

CE\{TLE&?EB” TRANBSYFToElgﬂRTEmNs
ANALYSIS
JAVA JAVA
L BYTECODE

Static Analysis

JSHRINK

THE EXTENDED CALL GRAPH

JSHRINK

THE EXTENDED CALL GRAPH

1 import java.lang.reflect.*;

2

3 class Reflection{

4 public static void main(String[] args)
5 throws IllegalAccessException,

6 InvocationTargetException,

7 InstantiationException,

8 NoSuchMethodException {

9

10 Class appClass = Reflection.class;

11 Object appObj = appClass.newInstance();
12

13 Method method1l = appClass

14 .getMethod(" foo");

15 method1.invoke(appObj);

16

17 bar();

18 }

19

20 private void foo(){
21 System.out.println("Hello " + fooCalled());
22 }

24 private void fooCalled(){
25 System.out.println(world!");
26 }

28 private void bar(){
29 System.out.println("Goodbye world!");
30}

32 private void foobar(){
33 System.out.println("Hello and goodbye”);
34 }

JSHRINK

THE EXTENDED CALL GRAPH

1 import java.lang.reflect.*;

2

3 class Reflection{

4 public static void main(String[] args)
5 throws IllegalAccessException,

6 InvocationTargetException,

7 InstantiationException,

8 NoSuchMethodException {

9

10 Class appClass = Reflection.class;
11 Object appObj = appClass.newInstance();

13 Method method1l = appClass

14 .getMethod("foo");

15 method1.invoke(appObj);
16

17 bar();

18 }

19

20 private void foo(){
21 System.out.println("Hello " + fooCalled());
22}

24 private void fooCalled(){
25 System.out.println("world!");
26 }

28 private void bar(){
29 System.out.println("Goodbye world!");
30}

32 private void foobar(){
33 System.out.println("Hello and goodbye”);
34 }

FOOCALLED

FOOBAR

JSHRINK

THE EXTENDED CALL GRAPH

1 import java.lang.reflect.*;

2

3 class Reflection{

4 public static void main(String[] args)
5 throws IllegalAccessException,

6 InvocationTargetException,

7 InstantiationException,

8 NoSuchMethodException {

9

10 Class appClass = Reflection.class;
11 Object appObj = appClass.newInstance();

13 Method method1l = appClass

14 .getMethod("foo");

15 method1.invoke(appObj);
16

17 bar();

18 }

19

20 private void foo(){
21 System.out.println("Hello " + fooCalled());
22}

24 private void fooCalled(){
25 System.out.println("world!");
26 }

28 private void bar(){
29 System.out.println("Goodbye world!");
30}

32 private void foobar(){
33 System.out.println("Hello and goodbye”);
34 }

Static

FOOCALLED

FOOBAR

JSHRINK

THE EXTENDED CALL GRAPH

1 import java.lang.reflect.*;

2

3 class Reflection{

4 public static void main(String[] args)
5 throws IllegalAccessException,

6 InvocationTargetException,

7 InstantiationException,

8 NoSuchMethodException {

9

10 Class appClass = Reflection.class;
11 Object appObj = appClass.newInstance();

13 Method method1l = appClass

14 .getMethod("foo");

15 method1.invoke(appObj);
16

17 bar();

18 }

19

20 private void foo(){
21 System.out.println("Hello " + fooCalled());
22}

24 private void fooCalled(){
25 System.out.println("world!");
26 }

28 private void bar(){
29 System.out.println("Goodbye world!");
30}

32 private void foobar(){
33 System.out.println("Hello and goodbye”);
34 }

Static

FOOCALLED

FOOBAR

JSHRINK

THE EXTENDED CALL GRAPH

1 import java.lang.reflect.*;
2
3 class Reflection{

4 public static void main(String[] args)

5 throws IllegalAccessException, .
6 InvocationTargetException, Static
7 InstantiationException,

8 NoSuchMethodException {

9
10 Class appClass = Reflection.class;
11 Object appObj = appClass.newInstance();
12
13 Method method1l = appClass

14 .getMethod("foo");

15 method1.invoke(appObj);

16

17 bar();

18 }

19
20 private void foo(){
21 System.out.println("Hello " + fooCalled());
22}
23

24 private void fooCalled(){
25 System.out.println("world!");

26}

27

28 private void bar(){

29 System.out.println("Goodbye world!");

30) FOOBAPR
31

32 private void foobar(){
33 System.out.println("Hello and goodbye”);
34 }

JSHRINK

THE EXTENDED CALL GRAPH

1 import java.lang.reflect.*;
2
3 class Reflection{

4 public static void main(String[] args)

5 throws IllegalAccessException, . .
6 InvocationTargetException, Static + Dynamlc
7 InstantiationException,

8 NoSuchMethodException {

9
10 Class appClass = Reflection.class;
11 Object appObj = appClass.newInstance();
12
13 Method method1l = appClass

14 .getMethod("foo");

15 method1.invoke(appObj);

16

17 bar();

18 }

19
20 private void foo(){
21 System.out.println("Hello " + fooCalled());
22}
23

24 private void fooCalled(){
25 System.out.println("world!");

26}

27

28 private void bar(){

29 System.out.println("Goodbye world!");

30) FOOBAPR
31

32 private void foobar(){
33 System.out.println("Hello and goodbye”);
34 }

JSHRINK

THE EXTENDED CALL GRAPH

1 import java.lang.reflect.*;

2

3 class Reflection{

4 public static void main(String[] args)
5 throws IllegalAccessException,

6 InvocationTargetException,

7 InstantiationException,

8 NoSuchMethodException {

9

10 Class appClass = Reflection.class;
11 Object appObj = appClass.newInstance();

13 Method method1l = appClass
14 .getMethod("foo");

15 method1.invoke(appObj);
16

17 bar();

18 }

19

20 private void foo(){
21 System.out.println("Hello " + fooCalled());
22}

24 private void fooCalled(){
25 System.out.println("world!");
26}

28 private void bar(){
29 System.out.println("Goodbye world!");
30}

32 private void foobar(){
33 System.out.println("Hello and goodbye”);
34 }

Static + Dynamic

FOOBAR

JSHRINK

THE EXTENDED CALL GRAPH

1 import java.lang.reflect.*;

2

3 class Reflection{

4 public static void main(String[] args)
5 throws IllegalAccessException,

6 InvocationTargetException,

7 InstantiationException,

8 NoSuchMethodException {

9

10 Class appClass = Reflection.class;
11 Object appObj = appClass.newInstance();

13 Method method1l = appClass

14 .getMethod("foo");

15 method1.invoke(appObj);
16

17 bar();

18 }

19

20 private void foo(){
21 System.out.println("Hello " + fooCalled());
22}

24 private void fooCalled(){
25 System.out.println("world!");
26 }

28 private void bar(){
29 System.out.println("Goodbye world!");
30}

32 private void foobar(){
33 System.out.println("Hello and goodbye”);
34 }

Static + Dynamic

FOOCALLED

FOOBAR

JSHRINK

THE EXTENDED CALL GRAPH

1 import java.lang.reflect.*;
2
3 class Reflection{

4 public static void main(String[] args)

5 throws IllegalAccessException, . .
6 InvocationTargetException, Static + Dynamlc
7 InstantiationException,

8 NoSuchMethodException {

9
10 Class appClass = Reflection.class;
11 Object appObj = appClass.newInstance();
12
13 Method methodl = appClass FOUCALLED
14 .getMethod("foo");
15 method1.invoke(appObj);
16
17 bar();
18 }
19

20 private void foo(){
21 System.out.println("Hello " + fooCalled());
22}

24 private void fooCalled(){
25 System.out.println("world!");
26 }

28 private void bar(){
29 System.out.println("Goodbye world!");
30}

FOOBAR

32 private void foobar(){
33 System.out.println("Hello and goodbye”);
34 }

JSHRINK

TRANSFORMATIONS

JSHRINK

TRANSFORMATIONS

JSHRINK

TRANSFORMATIONS

JMTRACE

JSHRINK

TRANSFORMATIONS

UNUSED
METHODS

JMTRACE

JSHRINK

TRANSFORMATIONS

UNUSED UNUSED
METHODS METHOD

JMTRACE REMOVAC

JSHRINK

TRANSFORMATIONS

UNUSED UNUSED
METHODS METHOD

JMTRACE REMOVAC

METHOD
INLINE

JSHRINK

TRANSFORMATIONS

UNUSED UNUSED
METHODS METHOD

JMTRACE REMOVAC

METHOD
INLINE

UNUSED
FIELDS

JSHRINK

TRANSFORMATIONS

UNUSED UNUSED
METHODS METHOD

JMTRACE REMOVAC

METHOD
INLINE

UNUSED
FIELDS

UNUSED
FIELD
REMOVAL

JSHRINK

TRANSFORMATIONS

UNUSED
METHODS

UNUSED
METHOD

UNUSED REMOVAL

JMTRACE CLASSES

METHOD
INLINE

UNUSED
FIELDS

UNUSED
FIELD
REMOVAL

JSHRINK

TRANSFORMATIONS

UNUSED
METHODS

UNUSED
METHOD

UNUSED REMOVAL

JMTRACE CLASSES

METHOD
INLINE

UNUSED
FIELDS

UNUSED
FIELD

REMOVAL
CLASS

HIERARCHY
INFO

JSHRINK

TRANSFORMATIONS

UNUSED
METHODS

UNUSED
METHOD
REMOVAL

UNUSED

JMTRACE CLASSES

METHOD
INLINE

CLASS

COLLAPSING

UNUSED
FIELDS

UNUSED
FIELD
REMOVAL

CLASS
HIERARCHY
INFO

JSHRINK

UNUSED METHOD REMOVAL

class A{ class A{

}

public A(){ }

public String method_1(){
return "A_String";
}

class B extends A{

1

public String foo
public String bar

Ilfooll;
IlbarII;

public static void main(Stringl[] args){

B b= new B();

System.out.println(b.method_1());
System.out.println(b.method_2());
}

public B(){
super();

¥

public String method_2(){
return this.foo;

}

public String method_3(){
return this.bar;

}

UNUSED
METHOD
REMOVAL

public A(){ }

public String method_1(){
return "A_String";
}

class B extends A{

public String foo
public String bar

Ilfooll;
Ilbarll;

public static void main(Stringl[] args.

B b= new B();

System.out.println(b.method_1());
System.out.println(b.method_2());
}

public B(){
super();

}

public String method_2(){
return this.foo;

JSHRINK

UNUSED FIELD REMOVAL

class A{ class A{
public A(){ } public A(){ }
public String method_1(){ public String method_1(){
return "A_String"; return "A_String";
} }
} ¥

class B extends A{ class B extends A{

public String foo
public String bar

Ilfooll ;

public String foo = "foo";
llbarll; i 5 i -

[S Ay e Pl ysd i

UNUSED
FIELD
REMOVAL

public static void main(Stringl[] args){
B b= new B();

public static void main(Stringl[] args){
B b= new B();

System.out.println(b.method_1());
System.out.println(b.method_2());
}

System.out.println(b.method_1());
System.out.println(b.method_2());
}

public B(){ public B(){

super(); super();

¥ ¥

public String method_2(){ public String method_2(){
return this.foo; return this.foo;

¥ ¥

JSHRINK

METHOD INLINING

class A{ class A{
public A(){ } public A(){ }

public String method_1(){
return "A_String";

¥
¥

class B extends A{ class B extends A{

public String foo = "foo"; public String foo =

public static void main(Stringl[] args){ public static void main(Sg%;;g[] args){
B b = new B(); B b = new B(); . -
System.out.println(b.method_1()); System.out.println (¥Hrevnogras) ;
System.out.println(b.method_2()); System.out.println(bmmuphudgﬁ*dﬁ;

} } <

public B(){ public B(){
super(); super();

} }

public String method_2(){
return this.foo;

¥

} ¥

class C extends A{} class C extends A{}

JSHRINK

CLASS COLLAPSING

class A{
public A(){ }

}
class B extends A{
public String foo = "foo";

public static void main(String[] args){

B b = new B(); CLASS

System.out.println("A_String"); CULLAPSING System.out.println("A_String");

System.out.println(b.foo); System.out.println(b.foo);
} }

public B(){
super();
}
}

class C extends A{}

JSHRINK

CHECKPOINTING

DETERMINED
TRANSFORMATION

CHECKPOINT
RESTORE

CHECKPOINT

APPLY

RUN TRANSFORMATION

APPLICATION
TESTS

JSHRINK

CHECKPOINTING

DETERMINED
TRANSFORMATION

CHECKPOINT
RESTORE

CHECKPOINT

APPLY

RUN TRANSFORMATION

APPLICATION
TESTS

COSTLY BUT

SAFE

JSHRINK

RESEARCH AGENDA

JSHRINK

RESEARCH AGENDA

Reduction — How much Java byte code reduction is achievable when applying
different transformations?

JSHRINK

RESEARCH AGENDA

Reduction — How much Java byte code reduction is achievable when applying
different transformations?

Preservation and Robustness — To what extent are program semantics preserved
when debloating software when using JShrink?

JSHRINK

RESEARCH AGENDA

Reduction — How much Java byte code reduction is achievable when applying
different transformations?

Preservation and Robustness — To what extent are program semantics preserved
when debloating software when using JShrink?

Dynamic Impact — How does program behavior differ when running with dynamic
analysis, compared to without?

JSHRINK

CANDIDATE PROGRAMS

JSHRINK

CANDIDATE PROGRAMS

Selection criteria:
> Popular: At least 100 GitHub stars.

> Compilable: We only support the
Maven build system. This is a
technical restriction.

> Timeout: The static call graph must
be executable in 10 hours.

> Testable: We only selected
applications with a JUnit test suite.

JSHRINK

CANDIDATE PROGRAMS

Selection criteria:

>

Popular: At least 100 GitHub stars.

Compilable: We only support the
Maven build system. This is a
technical restriction.

Timeout: The static call graph must
be executable in 10 hours.

Testable: We only selected
applications with a JUnit test suite.

vV VvV VvV VvV VvV V9V V9V VvV VvV VvV VvV Vv v

jam-tools

bucket

qartd;

dubbokeeper
frontend-maven-plugin
gson

distlrucache
retrofit1-okhttp3-client
rxrelay
rxreplayingshare
junit4

http-request

lanterna

vV VvV VvV VvV VvV VvV VvV V9V VvV VvV VvV V9v v

java-apns
mybatis-pagehelper
algorithms
fragmentargs
mocha

to mighty

zt-zip

gwt-cal
Java-Chronicle
maven-config-processor-plugin
jboss-logmanager
autoLoadCache
profiler

JSHRINK

CANDIDATE PROGRAMS

Selection criteria:

>

> jam-tools
: > bucket

Popular: At least 100 GitHub stars. .

> qarté4j
Compilable: We only support the * dubbokeeper |
Maven build system. This is a > frontend-maven-plugin
technical restriction. > gson

» distlrucache
Timeout: The static call graph must > retrofit1-okhttp3-client
be executable in 10 hours. > rxrelay

> rxreplayingshare
Testable: We only selected > junitd
applications with a JUnit test suite. > http-request

> lanterna

Average LOC: 14,729

vV VvV VvV VvV VvV VvV VvV V9V VvV VvV VvV V9v v

java-apns
mybatis-pagehelper
algorithms
fragmentargs
mocha

to mighty

zt-zip

gwt-cal
Java-Chronicle
maven-config-processor-plugin
jboss-logmanager
autoLoadCache
profiler

JSHRINK

RQ: REDUCTION

Transformation Mean Size Reduction*
Method Removal 11.0%
Field Removal 1.0%
Class Collapsing 0.1%
Method Inlining 2.1%

All without checkpointing 14.2%
All with checkpointing 13.3%

*Includes both application and library code

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

JShrink, utilizing all transformations, without checkpointing, results in 81 test

cases of 5213 failing (1.6%).

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

JShrink, utilizing all transformations, without checkpointing, results in 81 test

cases of 5213 failing (1.6%).

Most of these tests are due to the class collapse; 75 of the 81 failures.

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

JShrink, utilizing all transformations, without checkpointing, results in 81 test

cases of 5213 failing (1.6%).

Most of these tests are due to the class collapse; 75 of the 81 failures.

All known bugs are due to limitations or bugs in Soot static analysis not giving
information to account for all cases.

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

JShrink, utilizing all transformations, without checkpointing, results in 81 test

cases of 5213 failing (1.6%).

Most of these tests are due to the class collapse; 75 of the 81 failures.

All known bugs are due to limitations or bugs in Soot static analysis not giving
information to account for all cases.

No Tests fail when Checkpointing is enabled.

JSHRINK

RQ: DYNAMIC IMPACT
Transformation Test Failure Rate
JShrink Static 58.4%
JShrink Static + Dynamic 1.6%

JShrink Static + Dynamic + 0%
Checkpointing

Most failures in ‘JShrink Static’ are due to JVM validation, ‘NoClassDefFoundError’, and
‘ClassNotFoundException’ errors.

JSHRINK

DISCUSSION POINTS

We evaluated Tip et al.'s transformations in a modern context.
» Method removing is the most effective transformation, though all reduced bloat.

» Class Collapsing is the least effective, the most difficult to engineer, and the most error prone.

Reachability analysis in Java requires dynamic, as well as static, analysis
> Reachability in modern Java cannot be determined purely statically, dynamic analysis is needed.
» Without dynamic analysis, code debloating via reachability analysis can be dangerous.

> Important Note: Dynamic analysis is as good as the test inputs!

THANK YOU!

Research supported, in part by:

> ONR grant NO001418-1-2037

> NSF grants: CCF-1764077, CCF-1527923,
CCF-1723773

Intel CAPA

Samsung

v

v

Artifact: https://doi.org/10.6084/m9.figshare.12435542 » The Alexander von Humboldt Foundation

Paper at: https://www.bobbybruce.net/assets/pdfs/publications/bruce-2020-jshrink.pdf

BOBBY R. BRUCE, TIANYlI ZHANG, JASPREET ARORA, GUOQING HARRY XU,
AND MIRYUNG KIM

PRESENTED BY BOBBY R. BRUCE

- |

™~

https://doi.org/10.6084/m9.figshare.12435542
https://www.bobbybruce.net/assets/pdfs/publications/bruce-2020-jshrink.pdf

