
JSHRINK: IN-DEPTH INVESTIGATION INTO DEBLOATING
MODERN JAVA APPLICATIONS

BOBBY R. BRUCE, TIANYI ZHANG, JASPREET ARORA, GUOQING HARRY XU,
AND MIRYUNG KIM

PRESENTED BY BOBBY R. BRUCE

Paper at: https://www.bobbybruce.net/assets/pdfs/publications/bruce-2020-jshrink.pdf

https://www.bobbybruce.net/assets/pdfs/publications/bruce-2020-jshrink.pdf

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APP DESIRED
FEATURES

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APP

OTHER
FEATURE

DESIRED
FEATURES

OTHER
FEATURE

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APP

OTHER
FEATURE

DESIRED
FEATURES

OTHER
FEATURE

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APPDESIRED
FEATURES

OTHER
FEATURE

DESIRED
FEATURE

LIBRARY DESIRED
FEATURES

LIBRARY

OTHER
FEATURE

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APPDESIRED
FEATURES

OTHER
FEATURE

DESIRED
FEATURE

LIBRARY DESIRED
FEATURES

LIBRARY

OTHER
FEATURE

OTHER
FEATURE

OTHER
FEATURE

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APPDESIRED
FEATURES

OTHER
FEATURE

DESIRED
FEATURE

LIBRARY DESIRED
FEATURES

LIBRARY

OTHER
FEATURE

OTHER
FEATURE

OTHER
FEATURE

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APPDESIRED
FEATURES

OTHER
FEATURE

DESIRED
FEATURE

LIBRARY DESIRED
FEATURES

LIBRARY

OTHER
FEATURE

OTHER
FEATURE

OTHER
FEATURE

More Storage

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APPDESIRED
FEATURES

OTHER
FEATURE

DESIRED
FEATURE

LIBRARY DESIRED
FEATURES

LIBRARY

OTHER
FEATURE

OTHER
FEATURE

OTHER
FEATURE

More Storage

Increased Download Times

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APPDESIRED
FEATURES

OTHER
FEATURE

DESIRED
FEATURE

LIBRARY DESIRED
FEATURES

LIBRARY

OTHER
FEATURE

OTHER
FEATURE

OTHER
FEATURE

More Storage

Increased Download Times

Increased Attack Surface

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APPDESIRED
FEATURES

DESIRED
FEATURE

LIBRARY DESIRED
FEATURES

LIBRARY
More Storage

Increased Download Times

Increased Attack Surface

JSHRINK

MOTIVATION: MODERN SOFTWARE IS BLOATED

APP
DESIRED

FEATURES

DESIRED
FEATURE

LIBRARY DESIRED
FEATURES

LIBRARY

More Storage

Increased Download Times

Increased Attack Surface

JSHRINK

PREVIOUS WORK

JSHRINK

PREVIOUS WORK
Lots of good work on debloating C/C++; but Java has been largely ignored.

JSHRINK

PREVIOUS WORK
Lots of good work on debloating C/C++; but Java has been largely ignored.

Exception: “Practical Experience with an Application
Extractor for Java”, by Tip et al. OOPSLA 1999

JSHRINK

PREVIOUS WORK
Lots of good work on debloating C/C++; but Java has been largely ignored.

Exception: “Practical Experience with an Application
Extractor for Java”, by Tip et al. OOPSLA 1999

‣ Proposed and evaluated a set of Java bytecode
transformations.

‣ These transformations have been utilized heavily
by other researchers in this area (including us!).

‣ The effectiveness of these transformations at
preserving program behavior has not been
evaluated thoroughly in a modern context.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK
Previous works relied on purely static analysis.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK
Previous works relied on purely static analysis.

Java contains dynamic features.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK
Previous works relied on purely static analysis.

Java contains dynamic features.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK
Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this
program?

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK
Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this
program?

Answer: Technically, they all are.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK
Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this
program?

Answer: Technically, they all are.

Though true, this answer is unhelpful.

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK
Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this
program?

Answer: Technically, they all are.

Though true, this answer is unhelpful.

In Java, practical reachability analysis requires a
dynamic component

JSHRINK

LIMITATIONS OF THE PREVIOUS WORK
Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this
program?

Answer: Technically, they all are.

Though true, this answer is unhelpful.

In Java, practical reachability analysis requires a
dynamic component

Without decent reachability analysis, debloating is
impossible.

JSHRINK

JSHRINK: A HIGH LEVEL VIEW

JAVA
BYTECODE

EXTENDED
CALL GRAPH

ANALYSIS
JAVA

BYTECODE

JMTRACE

SOOT

BYTECODE
TRANSFORMATIONS

Entry points

JSHRINK

JSHRINK: A HIGH LEVEL VIEW

JAVA
BYTECODE

EXTENDED
CALL GRAPH

ANALYSIS
JAVA

BYTECODE

JMTRACE

SOOT

BYTECODE
TRANSFORMATIONS

Entry points

Dynamic Analysis

JSHRINK

JSHRINK: A HIGH LEVEL VIEW

JAVA
BYTECODE

EXTENDED
CALL GRAPH

ANALYSIS
JAVA

BYTECODE

JMTRACE

SOOT

BYTECODE
TRANSFORMATIONS

Entry points

Dynamic Analysis

Static Analysis

JSHRINK

THE EXTENDED CALL GRAPH

JSHRINK

THE EXTENDED CALL GRAPH

JSHRINK

THE EXTENDED CALL GRAPH

MAIN

FOO

BAR

FOOBAR

FOOCALLED

JSHRINK

THE EXTENDED CALL GRAPH

MAIN

FOO

BAR

FOOBAR

FOOCALLED

Static

JSHRINK

THE EXTENDED CALL GRAPH

MAIN

FOO

BAR

FOOBAR

FOOCALLED

Static

JSHRINK

THE EXTENDED CALL GRAPH

MAIN

FOO

BAR

FOOBAR

FOOCALLED

Static

JSHRINK

THE EXTENDED CALL GRAPH

MAIN

FOO

BAR

FOOBAR

FOOCALLED

Static + Dynamic

JSHRINK

THE EXTENDED CALL GRAPH

MAIN

FOO

BAR

FOOBAR

FOOCALLED

Static + Dynamic

JSHRINK

THE EXTENDED CALL GRAPH

MAIN

FOO

BAR

FOOBAR

FOOCALLED

Static + Dynamic

JSHRINK

THE EXTENDED CALL GRAPH

MAIN

FOO

BAR

FOOBAR

FOOCALLED

Static + Dynamic

JMTRACE

JSHRINK

TRANSFORMATIONS

JSHRINK

TRANSFORMATIONS

CGA

JSHRINK

TRANSFORMATIONS

CGA

SOOT

JMTRACE

JSHRINK

TRANSFORMATIONS

CGA

UNUSED
METHODS

SOOT

JMTRACE

JSHRINK

TRANSFORMATIONS

CGA

UNUSED
METHODS

SOOT

UNUSED
METHOD
REMOVALJMTRACE

JSHRINK

TRANSFORMATIONS

CGA

UNUSED
METHODS

SOOT

UNUSED
METHOD
REMOVAL

METHOD
INLINE

JMTRACE

JSHRINK

TRANSFORMATIONS

CGA

UNUSED
METHODS

UNUSED
FIELDS

SOOT

UNUSED
METHOD
REMOVAL

METHOD
INLINE

JMTRACE

JSHRINK

TRANSFORMATIONS

CGA

UNUSED
METHODS

UNUSED
FIELDS

SOOT

UNUSED
METHOD
REMOVAL

METHOD
INLINE

UNUSED
FIELD

REMOVAL

JMTRACE

JSHRINK

TRANSFORMATIONS

CGA

UNUSED
METHODS

UNUSED
FIELDS

SOOT

UNUSED
METHOD
REMOVAL

METHOD
INLINE

UNUSED
FIELD

REMOVAL

UNUSED
CLASSESJMTRACE

JSHRINK

TRANSFORMATIONS

CGA

UNUSED
METHODS

UNUSED
FIELDS

SOOT

 CLASS
HIERARCHY

INFO

UNUSED
METHOD
REMOVAL

METHOD
INLINE

UNUSED
FIELD

REMOVAL

UNUSED
CLASSESJMTRACE

JSHRINK

TRANSFORMATIONS

CGA

UNUSED
METHODS

UNUSED
FIELDS

SOOT

 CLASS
HIERARCHY

INFO

UNUSED
METHOD
REMOVAL

METHOD
INLINE

UNUSED
FIELD

REMOVAL

CLASS
COLLAPSING

UNUSED
CLASSESJMTRACE

JSHRINK

UNUSED METHOD REMOVAL

UNUSED
METHOD
REMOVAL

JSHRINK

UNUSED FIELD REMOVAL

UNUSED
FIELD

REMOVAL

JSHRINK

METHOD INLINING

METHOD
INLINING

JSHRINK

CLASS COLLAPSING

CLASS
COLLAPSING

JSHRINK

CHECKPOINTING
DETERMINED

TRANSFORMATION

CHECKPOINT

RUN
APPLICATION

TESTS

RESTORE
CHECKPOINT

Pass

Fail APPLY
TRANSFORMATION

JSHRINK

CHECKPOINTING
DETERMINED

TRANSFORMATION

CHECKPOINT

RUN
APPLICATION

TESTS

RESTORE
CHECKPOINT

Pass

Fail

COSTLY BUT
SAFE

APPLY
TRANSFORMATION

JSHRINK

RESEARCH AGENDA

JSHRINK

RESEARCH AGENDA

Reduction — How much Java byte code reduction is achievable when applying
different transformations?

JSHRINK

RESEARCH AGENDA

Reduction — How much Java byte code reduction is achievable when applying
different transformations?

Preservation and Robustness — To what extent are program semantics preserved
when debloating software when using JShrink?

JSHRINK

RESEARCH AGENDA

Reduction — How much Java byte code reduction is achievable when applying
different transformations?

Preservation and Robustness — To what extent are program semantics preserved
when debloating software when using JShrink?

Dynamic Impact — How does program behavior differ when running with dynamic
analysis, compared to without?

JSHRINK

CANDIDATE PROGRAMS

JSHRINK

CANDIDATE PROGRAMS
Selection criteria:

‣ Popular: At least 100 GitHub stars.

‣ Compilable: We only support the
Maven build system. This is a
technical restriction.

‣ Timeout: The static call graph must
be executable in 10 hours.

‣ Testable: We only selected
applications with a JUnit test suite.

JSHRINK

CANDIDATE PROGRAMS
‣ jam-tools
‣ bucket
‣ qart4j
‣ dubbokeeper
‣ frontend-maven-plugin
‣ gson
‣ distlrucache
‣ retrofit1-okhttp3-client
‣ rxrelay
‣ rxreplayingshare
‣ junit4
‣ http-request
‣ lanterna

‣ java-apns
‣ mybatis-pagehelper
‣ algorithms
‣ fragmentargs
‣ mocha
‣ to mighty
‣ zt-zip
‣ gwt-cal
‣ Java-Chronicle
‣ maven-config-processor-plugin
‣ jboss-logmanager
‣ autoLoadCache
‣ profiler

Selection criteria:

‣ Popular: At least 100 GitHub stars.

‣ Compilable: We only support the
Maven build system. This is a
technical restriction.

‣ Timeout: The static call graph must
be executable in 10 hours.

‣ Testable: We only selected
applications with a JUnit test suite.

JSHRINK

CANDIDATE PROGRAMS
‣ jam-tools
‣ bucket
‣ qart4j
‣ dubbokeeper
‣ frontend-maven-plugin
‣ gson
‣ distlrucache
‣ retrofit1-okhttp3-client
‣ rxrelay
‣ rxreplayingshare
‣ junit4
‣ http-request
‣ lanterna

‣ java-apns
‣ mybatis-pagehelper
‣ algorithms
‣ fragmentargs
‣ mocha
‣ to mighty
‣ zt-zip
‣ gwt-cal
‣ Java-Chronicle
‣ maven-config-processor-plugin
‣ jboss-logmanager
‣ autoLoadCache
‣ profiler

Selection criteria:

‣ Popular: At least 100 GitHub stars.

‣ Compilable: We only support the
Maven build system. This is a
technical restriction.

‣ Timeout: The static call graph must
be executable in 10 hours.

‣ Testable: We only selected
applications with a JUnit test suite.

Average LOC: 14,729

JSHRINK

RQ: REDUCTION

Transformation Mean Size Reduction*
Method Removal 11.0%

Field Removal 1.0%
Class Collapsing 0.1%
Method Inlining 2.1%

All without checkpointing 14.2%
All with checkpointing 13.3%

*Includes both application and library code

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

JShrink, utilizing all transformations, without checkpointing, results in 81 test
cases of 5213 failing (1.6%).

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

JShrink, utilizing all transformations, without checkpointing, results in 81 test
cases of 5213 failing (1.6%).

Most of these tests are due to the class collapse; 75 of the 81 failures.

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

JShrink, utilizing all transformations, without checkpointing, results in 81 test
cases of 5213 failing (1.6%).

Most of these tests are due to the class collapse; 75 of the 81 failures.

All known bugs are due to limitations or bugs in Soot static analysis not giving
information to account for all cases.

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

JSHRINK

RQ: PRESERVATION AND ROBUSTNESS

JShrink, utilizing all transformations, without checkpointing, results in 81 test
cases of 5213 failing (1.6%).

Most of these tests are due to the class collapse; 75 of the 81 failures.

All known bugs are due to limitations or bugs in Soot static analysis not giving
information to account for all cases.

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

No Tests fail when Checkpointing is enabled.

JSHRINK

RQ: DYNAMIC IMPACT
Transformation Test Failure Rate

JShrink Static 58.4%

JShrink Static + Dynamic 1.6%

JShrink Static + Dynamic +
Checkpointing

0%

Most failures in ‘JShrink Static’ are due to JVM validation, ‘NoClassDefFoundError’, and
‘ClassNotFoundException’ errors.

JSHRINK

DISCUSSION POINTS

We evaluated Tip et al.’s transformations in a modern context.

‣ Method removing is the most effective transformation, though all reduced bloat.

‣ Class Collapsing is the least effective, the most difficult to engineer, and the most error prone.

Reachability analysis in Java requires dynamic, as well as static, analysis

‣ Reachability in modern Java cannot be determined purely statically, dynamic analysis is needed.

‣ Without dynamic analysis, code debloating via reachability analysis can be dangerous.

‣ Important Note: Dynamic analysis is as good as the test inputs!

Research supported, in part by:

‣ ONR grant N0001418-1-2037
‣ NSF grants: CCF-1764077, CCF-1527923,

CCF-1723773
‣ Intel CAPA
‣ Samsung
‣ The Alexander von Humboldt Foundation

THANK YOU!
Artifact: https://doi.org/10.6084/m9.figshare.12435542

BOBBY R. BRUCE, TIANYI ZHANG, JASPREET ARORA, GUOQING HARRY XU,
AND MIRYUNG KIM

PRESENTED BY BOBBY R. BRUCE

Paper at: https://www.bobbybruce.net/assets/pdfs/publications/bruce-2020-jshrink.pdf

https://doi.org/10.6084/m9.figshare.12435542
https://www.bobbybruce.net/assets/pdfs/publications/bruce-2020-jshrink.pdf

