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Abstract niques for extracting Java applications®. These t forma-

Java programs are routmely itted over low-bandwidth
network con d class file archives (i.e.,
zip files and jar files). Smce “archive size is directly propor-
tional to download time, it is desirable for applications to be
u small as pouxble T)us paper is concerned with the use
tr such as ] of dead meth-
ods and fields, inlining of method calls, and lunphﬁcntlon of
the class hierarchy for reducing application size. Such “ex-
traction” techniques are generally believed to be espccial.ly
useful for applications that use class libraries, since typi-
cally only a small trachon ofa hbruy s functionality is u.sed

tions include:
e removal of redundant methods and fields,
e devirtualization and inlining of method calls,
e transformation of the class hierarchy, and

or ing of packa 1 , methods and fields,

and have the effect oi lcducmg application smc Application
extraction is g ly believed to be especially useful when
an upphcatlon is shipped with a (proprietary) class library,
b typically only a small fraction of the library’s func-

By “pruning away” unused library functionality, appli

lity is used. In such cases, “pruning away” unused li-

size can be reduced dramatically. We impl ted a b
of application extraction techniques in Jax, an application
extractor for Java, and evaluate their effectiveness on a set of
realistic benchmarks ranging from 27 to 2,332 classes (with
archives ranging from 56,796 to 3,810,120 bytes). We report
archive size reductions ranging from 13.4% to 90.2% (48.7%
on average).

1 Introduction

Java®' [10] programs are routinely transmitted over the in-
ternet as compressed class file archives (i.e., zip files and
jar files). A typical example of this situation consists of
downloading a web page that contains one or more embed-
ded Java applets. The downloading of class file archives is
increasingly often the distribution mechanism of choice for
stand-alone Java applications as well (especially for “net-
work computers”). Since the time required to download an
application is proportional to the size of the archive, it is
desirable for the archive to be as small as possible.

In this paper we evaluate the effectiveness of a number
of compiler-optimization and program transformation tech-

d k of Sun Mi

*Java is a
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copies are not made or distributed for profit or commerciai advant

-age and that copies bear this notice and the full citation on the first page.
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redistribute to lists, requires prior specific permission and/or a fee.
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brary functionality can dramatically reduce application size.

We implemented a number of application extraction tech-
niques in the context of Jax (short for Jikes Application
eXtractor). Jax reads in the class files [15] that constitute
a Java application, and performs a whole-pxogn.m analysis
to determine the ts (e.g., methods, and
fields) of the tpphc:hon that must be reta.mcd in order to
preserve program behavior. Jax removes the unnecessary
components, performs several size-reducing transformations
to the application, and writes out a class file archive con-
taining the extracted application. Jax relies on user input
to specnfy the comp ts of the application that are ac-
cessed using Java's reflection mechanism (3], but the ex-
traction p is fully ti othennse Jax has been
available on IBM’ alphaWorks web site® since June 1998
and has been downloaded over 10,000 times since then. We
are planning to ship Jax as a Technology Preview with an
IBM product (IBM VisualAge Java 3.0, Enterprise Edition)
later this year.

We evaluate the performance of Jax on a set of real-
life benchmarks ranging from 27 to 2,332 classes (the cor-
responding ucluves range ﬁom 56,796 to 3,810,120 bytes),

and in size 1 g from 13.4%
to 90.2% (48. 7% on average'). M nts over mod
and LAN connections confirm that download times are re-
duced proportionally.

?In what follows, the word ‘application’ will be used to refer to
applications as well as applets, unless otherwise stated.

*www.alphaWorks.ibe. con/toch/JAX

‘Al average percentages reported in this paper are computed using
the geometric mean.
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an lication is shipped with a (p y) class library,
b typxc:lly only a small fraction of the hbruy 's func-
tionality is used. In luch cases, prumng away” unused li-
brary functionality can d application size.

We nnplemented a number of tpphcttlon extraction tech-
niques in the context of Jax (short for Jikes Application
eXtractor). Jax reads in the class files [15] that constitute
a Java application, and performs a whole-pxogum analysis
to determine the ts (e.g., methods, and
fields) of the :pphc:tmn that must be retained in order to
preserve program behavior. Jax removes the unnecessary
components, performs several si t ti
to the application, and writes out a class file archive con-
taining the extracted application. Jax relies on user input
to speclfy the comp ts of the application that are ac-
cessed using Java’s reflection mechanism [3], but the ex-
traction p is fully ti othenme Jax has been
available on IBM’ ulphuWoxlu web site’ since June 1998
and has been downloaded over 10,000 times since then. We
are planning to ship Jax as a Techno]ogy Preview with an
IBM product (IBM VisualAge Java 3.0, Enterprise Edition)
later this year.

We evaluate the petfotmance of Jax on a set of real-
life benchmarks ranging from 27 to 2,332 classes (the cor-
responding ucluves range fxom 56,796 to 3,810,120 bytes),

and in size 1 g from 13.4%
to 90.2% (48. 7% on average'). M nts over mod
and LAN connections confirm that download times are re-
duced proportionally.

?In what follows, the word ‘application’ will be used to refer to
applications as well as applets, unless otherwise stated.

*www.alphaWorks.ibe. con/toch/JAX

‘Al average percentages reported in this paper are computed using
the geometric mean.

> Proposed and evaluated a set of Java bytecode
transformations.

> These transformations have been utilized heavily
by other researchers in this area (including us!).

> The effectiveness of these transformations at
preserving program behavior has not been
evaluated thoroughly in a modern context.
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1 import java.lang.reflect.*; Previous works relied on purely static analysis.

2

3 class Reflection{

4 public static void main(String[] args) Java contains dynamic features.
5 throws IllegalAccessException,

6 InvocationTargetException,

7 InstantiationException,

8 NoSuchMethodException {

9

10 Class appClass = Reflection.class;

11 Object appObj = appClass.newInstance();
12

13 Method methodl = appClass

14 .getMethod(args[©]);

15 method1.invoke(app0Obj);

16 }

17

18 private void foo(){

19 System.out.println("Hello " + fooCalled());
20 }

21

22 private void fooCalled(){

23 System.out.println( "world!");

24}

25

26 private void bar(){

27 System.out.println( " Goodbye world!");

28 }

29

30 private void foobar(){

31 System.out.println("Hello and goodbye™);
32}
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1 import java.lang.reflect.*;

2

3 class Reflection{
public static void main(String[] args)
throws IllegalAccessException,

InstantiationException,
NoSuchMethodException {

4
5
6 InvocationTargetException,
7
8
9

10 Class appClass = Reflection.class;
11 Object appObj = appClass.newInstance();

13 Method methodl = appClass
14 .getMethod(args[©]);
15 method1.invoke(app0Obj);

16 }

18 private void
19 System.out.
20}

22 private void
23 System.out.
24 }

26 private void
27 System.out.
28 }

30 private void
31 System.out.
32}

foo(){
println('Hello " + fooCalled());

fooCalled(){
println("world!");

bar(){
println("Coodbye world!");

foobar(){
println("Hello and goodbye");

Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this
program?

Answer: Technically, they all are.

Though true, this answer is unhelpful.

In Java, practical reachability analysis requires a
dynamic component

Without decent reachability analysis, debloating is
impossible.
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34 }
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UNUSED METHOD REMOVAL

class A{ class A{

}

public A(){ }

public String method_1(){
return "A_String";
}

class B extends A{

1

public String foo
public String bar

Ilfooll;
IlbarII;

public static void main(Stringl[] args){

B b= new B();

System.out.println(b.method_1());
System.out.println(b.method_2());
}

public B(){
super();

¥

public String method_2(){
return this.foo;

}

public String method_3(){
return this.bar;

}

UNUSED
METHOD
REMOVAL

public A(){ }

public String method_1(){
return "A_String";
}

class B extends A{

public String foo
public String bar

Ilfooll;
Ilbarll;

public static void main(Stringl[] args.

B b= new B();

System.out.println(b.method_1());
System.out.println(b.method_2());
}

public B(){
super();

}

public String method_2(){
return this.foo;
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UNUSED FIELD REMOVAL

class A{ class A{
public A(){ } public A(){ }
public String method_1(){ public String method_1(){
return "A_String"; return "A_String";
} }
} ¥

class B extends A{ class B extends A{

public String foo
public String bar

Ilfooll ;

public String foo = "foo";
llbarll; i 5 i -

[ S Ay e Pl ysd i

UNUSED
FIELD
REMOVAL

public static void main(Stringl[] args){
B b= new B();

public static void main(Stringl[] args){
B b= new B();

System.out.println(b.method_1());
System.out.println(b.method_2());
}

System.out.println(b.method_1());
System.out.println(b.method_2());
}

public B(){ public B(){

super(); super();

¥ ¥

public String method_2(){ public String method_2(){
return this.foo; return this.foo;

¥ ¥
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METHOD INLINING

class A{ class A{
public A(){ } public A(){ }

public String method_1(){
return "A_String";

¥
¥

class B extends A{ class B extends A{

public String foo = "foo"; public String foo =

public static void main(Stringl[] args){ public static void main(Sg%;;g[] args){
B b = new B(); B b = new B(); . -
System.out.println(b.method_1()); System.out.println (¥Hrevnogras) ;
System.out.println(b.method_2()); System.out.println(bmmuphudgﬁ*dﬁ;

} } <

public B(){ public B(){
super(); super();

} }

public String method_2(){
return this.foo;

¥

} ¥

class C extends A{} class C extends A{}
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CLASS COLLAPSING

class A{
public A(){ }

}
class B extends A{
public String foo = "foo";

public static void main(String[] args){

B b = new B(); CLASS

System.out.println("A_String"); CULLAPSING System.out.println("A_String");

System.out.println(b.foo); System.out.println(b.foo);
} }

public B(){
super();
}
}

class C extends A{}
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RUN TRANSFORMATION
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COSTLY BUT

SAFE
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RESEARCH AGENDA

Reduction — How much Java byte code reduction is achievable when applying
different transformations?

Preservation and Robustness — To what extent are program semantics preserved
when debloating software when using JShrink?

Dynamic Impact — How does program behavior differ when running with dynamic
analysis, compared to without?
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be executable in 10 hours.

> Testable: We only selected
applications with a JUnit test suite.



JSHRINK

CANDIDATE PROGRAMS

Selection criteria:

>

Popular: At least 100 GitHub stars.

Compilable: We only support the
Maven build system. This is a
technical restriction.

Timeout: The static call graph must
be executable in 10 hours.

Testable: We only selected
applications with a JUnit test suite.

vV VvV VvV VvV VvV V9V V9V VvV VvV VvV VvV Vv v

jam-tools

bucket

qartd;

dubbokeeper
frontend-maven-plugin
gson

distlrucache
retrofit1-okhttp3-client
rxrelay
rxreplayingshare
junit4

http-request

lanterna

vV VvV VvV VvV VvV VvV VvV V9V VvV VvV VvV V9v v

java-apns
mybatis-pagehelper
algorithms
fragmentargs
mocha

to mighty

zt-zip

gwt-cal
Java-Chronicle
maven-config-processor-plugin
jboss-logmanager
autoLoadCache
profiler
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CANDIDATE PROGRAMS

Selection criteria:

>

> jam-tools
: > bucket

Popular: At least 100 GitHub stars. .

> qarté4j
Compilable: We only support the * dubbokeeper |
Maven build system. This is a > frontend-maven-plugin
technical restriction. > gson

» distlrucache
Timeout: The static call graph must > retrofit1-okhttp3-client
be executable in 10 hours. > rxrelay

> rxreplayingshare
Testable: We only selected > junitd
applications with a JUnit test suite. > http-request

> lanterna

Average LOC: 14,729

vV VvV VvV VvV VvV VvV VvV V9V VvV VvV VvV V9v v

java-apns
mybatis-pagehelper
algorithms
fragmentargs
mocha

to mighty

zt-zip

gwt-cal
Java-Chronicle
maven-config-processor-plugin
jboss-logmanager
autoLoadCache
profiler
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RQ: REDUCTION

Transformation Mean Size Reduction*
Method Removal 11.0%
Field Removal 1.0%
Class Collapsing 0.1%
Method Inlining 2.1%

All without checkpointing 14.2%
All with checkpointing 13.3%

*Includes both application and library code
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RQ: PRESERVATION AND ROBUSTNESS

We held back 20% of the each project’s test, and used the remaining 80% for
the dynamic analysis.

JShrink, utilizing all transformations, without checkpointing, results in 81 test

cases of 5213 failing (1.6%).

Most of these tests are due to the class collapse; 75 of the 81 failures.

All known bugs are due to limitations or bugs in Soot static analysis not giving
information to account for all cases.

No Tests fail when Checkpointing is enabled.
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RQ: DYNAMIC IMPACT
Transformation Test Failure Rate
JShrink Static 58.4%
JShrink Static + Dynamic 1.6%

JShrink Static + Dynamic + 0%
Checkpointing

Most failures in ‘JShrink Static’ are due to JVM validation, ‘NoClassDefFoundError’, and
‘ClassNotFoundException’ errors.
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DISCUSSION POINTS

We evaluated Tip et al.'s transformations in a modern context.
» Method removing is the most effective transformation, though all reduced bloat.

» Class Collapsing is the least effective, the most difficult to engineer, and the most error prone.

Reachability analysis in Java requires dynamic, as well as static, analysis
> Reachability in modern Java cannot be determined purely statically, dynamic analysis is needed.
» Without dynamic analysis, code debloating via reachability analysis can be dangerous.

> Important Note: Dynamic analysis is as good as the test inputs!
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