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PREVIOUS WORK
Lots of good work on debloating C/C++; but Java has been largely ignored.

Exception: “Practical Experience with an Application 
Extractor for Java”, by Tip et al. OOPSLA 1999

‣ Proposed and evaluated a set of Java bytecode 
transformations. 

‣ These transformations have been utilized heavily 
by other researchers in this area (including us!). 

‣ The effectiveness of these transformations at 
preserving program behavior has not been 
evaluated thoroughly in a modern context.
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LIMITATIONS OF THE PREVIOUS WORK
Previous works relied on purely static analysis.

Java contains dynamic features.

Question: What methods are reachable in this 
program?

Answer: Technically, they all are.

Though true, this answer is unhelpful.

In Java, practical reachability analysis requires a 
dynamic component

Without decent reachability analysis, debloating is 
impossible.
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RESEARCH AGENDA

Reduction — How much Java byte code reduction is achievable when applying 
different transformations?

Preservation and  Robustness — To what extent are program semantics preserved 
when debloating software when using JShrink?

Dynamic Impact  — How does program behavior differ when running with dynamic 
analysis, compared to without?
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‣ jboss-logmanager 
‣ autoLoadCache 
‣ profiler

Selection criteria: 

‣ Popular: At least 100 GitHub stars. 

‣ Compilable: We only support the 
Maven build system. This is a 
technical restriction. 

‣ Timeout: The static call graph must 
be executable in 10 hours. 

‣ Testable: We only selected 
applications with a JUnit test suite.

Average LOC: 14,729
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RQ: REDUCTION

Transformation Mean Size Reduction*
Method Removal 11.0%

Field Removal 1.0%
Class Collapsing 0.1%
Method Inlining 2.1%

All without checkpointing 14.2%
All with checkpointing 13.3%

*Includes both application and library code
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RQ: PRESERVATION AND ROBUSTNESS

JShrink, utilizing all transformations, without checkpointing, results in 81 test 
cases of 5213 failing (1.6%).

Most of these tests are due to the class collapse; 75 of the 81 failures.

All known bugs are due to limitations or bugs in Soot static analysis not giving 
information to account for all cases.

We held back 20% of the each project’s test, and used the remaining 80% for 
the dynamic analysis.

No Tests fail when Checkpointing is enabled.
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RQ: DYNAMIC IMPACT
Transformation Test Failure Rate

JShrink Static 58.4%

JShrink Static + Dynamic 1.6%

JShrink Static + Dynamic + 
Checkpointing

0%

Most failures in ‘JShrink Static’ are due to JVM validation, ‘NoClassDefFoundError’, and 
‘ClassNotFoundException’ errors.
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DISCUSSION POINTS

We evaluated Tip et al.’s transformations in a modern context. 

‣ Method removing is the most effective transformation, though all reduced bloat. 

‣ Class Collapsing is the least effective, the most difficult to engineer, and the most error prone.

Reachability analysis in Java requires dynamic, as well as static, analysis 

‣ Reachability in modern Java cannot be determined purely statically, dynamic analysis is needed. 

‣ Without dynamic analysis, code debloating via reachability analysis can be dangerous. 

‣ Important Note: Dynamic analysis is as good as the test inputs!
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